The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature

View More View Less
  • 1 NOAA/Forecast Systems Laboratory, Boulder, Colorado
© Get Permissions
Full access

Abstract

The Local Analysis and Prediction System combines numerous data sources into a set of analyses and forecasts on a 10-km grid with high temporal resolution. To arrive at an analysis of cloud cover, several input analyses are combined with surface aviation observations and pilot reports of cloud layers. These input analyses am a skin temperature analysis (used to solve for cloud layer heights and coverage) derived from Geostationary Operational Environmental Satellite IR 11.24-µm data, other visible and multispectral imagery, a three-dimensional temperature analysis, and a three-dimensional radar reflectivity analysis derived from full volumetric radar data. Use of a model first guess for clouds is currently being phased in. The goal is to combine the data sources to take advantage of their strengths, thereby automating the synthesis similar to that of a human forecaster.

The design of the analysis procedures and output displays focuses on forecaster utility. A number of derived fields are calculated including cloud type, liquid water content, ice content, and icing severity, as well as precipitation type, concentration, and accumulation. Results from validating the cloud fields against independent data obtained during the Winter Icing and Storms Project are presented.

Forecasters can now make use of these analyses in a variety of situations, such as depicting sky cover and radiation characteristics over a region, three-dimensionally delineating visibility and icing conditions for aviation, depicting precipitation type, rain and snow accumulation, etc.

Abstract

The Local Analysis and Prediction System combines numerous data sources into a set of analyses and forecasts on a 10-km grid with high temporal resolution. To arrive at an analysis of cloud cover, several input analyses are combined with surface aviation observations and pilot reports of cloud layers. These input analyses am a skin temperature analysis (used to solve for cloud layer heights and coverage) derived from Geostationary Operational Environmental Satellite IR 11.24-µm data, other visible and multispectral imagery, a three-dimensional temperature analysis, and a three-dimensional radar reflectivity analysis derived from full volumetric radar data. Use of a model first guess for clouds is currently being phased in. The goal is to combine the data sources to take advantage of their strengths, thereby automating the synthesis similar to that of a human forecaster.

The design of the analysis procedures and output displays focuses on forecaster utility. A number of derived fields are calculated including cloud type, liquid water content, ice content, and icing severity, as well as precipitation type, concentration, and accumulation. Results from validating the cloud fields against independent data obtained during the Winter Icing and Storms Project are presented.

Forecasters can now make use of these analyses in a variety of situations, such as depicting sky cover and radiation characteristics over a region, three-dimensionally delineating visibility and icing conditions for aviation, depicting precipitation type, rain and snow accumulation, etc.

Save