• Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaylock, B. K., J. D. Horel, and S. T. Liston, 2017: Cloud archiving and data mining of High-Resolution Rapid Refresh forecast model output. Comput. Geosci., 109, 4350, https://doi.org/10.1016/j.cageo.2017.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaylock, B. K., J. D. Horel, and C. Galli, 2018: High-Resolution Rapid Refresh model data analytics derived on the open science grid to assist wildland fire weather assessment. J. Atmos. Oceanic Technol., 35, 22132227, https://doi.org/10.1175/JTECH-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and C. D. Kummerow, 2015: Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central US. J. Adv. Model. Earth Syst., 7, 12481264, https://doi.org/10.1002/2015MS000497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., C. D. Kummerow, and C. Alexander, 2017: A features-based assessment of the evolution of warm season precipitation forecasts from the HRRR model over three years of development. Wea. Forecasting, 32, 18411856, https://doi.org/10.1175/WAF-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlaw, L. B., A. E. Cohen, and J. W. Rogers, 2017: Synoptic and mesoscale environment of convection during the North American monsoon across central and southern Arizona. Wea. Forecasting, 32, 361375, https://doi.org/10.1175/WAF-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casati, B., and L. J. Wilson, 2007: A new spatial-scale decomposition of the Brier score: Application to the verification of lightning probability forecasts. Mon. Wea. Rev., 135, 30523069, https://doi.org/10.1175/MWR3442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J. P., F. G. Samplatsky, A. J. Kochenash, P. E. Shafer, J. E. Ghirardelli, and C. Huang, 2019: LAMP upgraded convection and total lightning probability and “potential” guidance for the conterminous United States. Wea. Forecasting, 34, 15191545, https://doi.org/10.1175/WAF-D-19-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H., R. Blakeslee, and S. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337, https://doi.org/10.1029/JD094iD11p13329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, https://doi.org/10.1175/2010WAF2222404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, https://doi.org/10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frogner, I.-L., A. Singleton, M. Køltzow, and U. Andrae, 2019: Convection-permitting ensembles: Challenges related to their design and use. Quart. J. Roy. Meteor. Soc., 145, 90106, https://doi.org/10.1002/QJ.3525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S., and Coauthors, 2013: The GOES-R geostationary lightning mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., S. G. Benjamin, T. T. Ladwig, D. C. Dowell, S. S. Weygandt, C. R. Alexander, and J. S. Whitaker, 2017: GSI three-dimensional ensemble–variational hybrid data assimilation using a global ensemble for the regional Rapid Refresh model. Mon. Wea. Rev., 145, 42054225, https://doi.org/10.1175/MWR-D-16-0418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., and S. G. Benjamin, 2017: Observation system experiments with the hourly updating Rapid Refresh model using GSI hybrid ensemble–variational data assimilation. Mon. Wea. Rev., 145, 28972918, https://doi.org/10.1175/MWR-D-16-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert, D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2011: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, 292 pp.

    • Crossref
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochanski, A. K., M. A. Jenkins, J. Mandel, J. D. Beezley, and S. K. Krueger, 2013: Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment. Geosci. Model Dev., 6, 11091126, https://doi.org/10.5194/gmd-6-1109-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W., D. Mach, M. Bateman, P. Armstrong, and K. Virts, 2018: GOES-16 GLM level 2 data full validation data quality: Product performance guide for data users. NOAA, 16 pp., https://www.ncdc.noaa.gov/sites/default/files/attachments/GOES16_GLM_FullValidation_ProductPerformanceGuide.pdf.

  • Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecasting, 27, 14701488, https://doi.org/10.1175/WAF-D-11-00144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts. Wea. Forecasting, 30, 405423, https://doi.org/10.1175/WAF-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D., H. Christian, R. Blakeslee, D. Boccippio, S. Goodman, and W. Boeck, 2007: Performance assessment of the optical transient detector and lightning imaging sensor. J. Geophys. Res., 112, D09210, https://doi.org/10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skill forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, https://doi.org/10.1175/2008WAF2222152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and G. Csima, 2017: Ensemble versus deterministic performance at the kilometer scale. Wea. Forecasting, 32, 16971709, https://doi.org/10.1175/WAF-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., N. Roberts, and S. Thompson, 2013: A long-term assessment of precipitation forecast skill using the Fractions Skill Score. Meteor. Appl., 20, 176186, https://doi.org/10.1002/met.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., and J. Schmidt, 2015: Applying a neighborhood fractions sampling approach as a diagnostic tool. Mon. Wea. Rev., 143, 47364749, https://doi.org/10.1175/MWR-D-14-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, https://doi.org/10.1175/2008JHM939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikitovic, Z., A. Strinkic, G. Malovic, V. Stojanovic, and Z. Petrovic, 2008: Measurements and analysis of spatial profiles of 777.4 nm line in a townsend discharge in oxygen. Acta Chim. Slov., 55, 219222.

    • Search Google Scholar
    • Export Citation
  • Prichard, S., and Coauthors, 2019: The fire and smoke model evaluation experiment—A plan for integrated, large fire-atmosphere field campaigns. Atmosphere, 10, 66, https://doi.org/10.3390/atmos10020066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radford, J. T., G. M. Lackmann, and M. A. Baxter, 2019: An evaluation of snowband predictability in the High-Resolution Rapid Refresh. Wea. Forecasting, 34, 14771494, https://doi.org/10.1175/WAF-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain, 2019: Postprocessing and visualization techniques for convection-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 12451258, https://doi.org/10.1175/BAMS-D-18-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, https://doi.org/10.1002/met.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial geostationary lightning mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2019: NCAR’s real-time convection-allowing ensemble project. Bull. Amer. Meteor. Soc., 100, 321343, https://doi.org/10.1175/BAMS-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skok, G., 2016: Analysis of fraction skill score properties for a displaced rainy grid point in a rectangular domain. Atmos. Res., 169, 556565, https://doi.org/10.1016/j.atmosres.2015.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skok, G., and N. Roberts, 2016: Analysis of fractions skill score properties for random precipitation fields and ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 142, 25992610, https://doi.org/10.1002/qj.2849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., and W. J. Koshak, 2018: A baseline for the predictability of U.S. cloud-to-ground lightning. Geophys. Res. Lett., 45, 10 71910 728, https://doi.org/10.1029/2018GL079750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagenbrenner, N. S., J. M. Forthofer, B. K. Lamb, K. S. Shannon, and B. W. Butler, 2016: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys., 16, 52295241, https://doi.org/10.5194/acp-16-5229-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, J. M., 2017: A technique for verification of convection-permitting NWP model deterministic forecasts of lightning activity. Wea. Forecasting, 32, 97115, https://doi.org/10.1175/WAF-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in Atmospheric Sciences. Vol. 100. Academic Press, 704 pp.

  • Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and B. G. Brown, 2014: Beyond the basics: Evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, https://doi.org/10.1175/WAF-D-13-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J., M. C. Barth, and D. Noone, 2013: Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations. Geosci. Model Dev., 6, 429443, https://doi.org/10.5194/gmd-6-429-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., G. Thompson, D. R. Adriaansen, and S. D. Landolt, 2019: On the value of time-lag-ensemble averaging to improve numerical model predictions of aircraft icing conditions. Wea. Forecasting, 34, 507519, https://doi.org/10.1175/WAF-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarnell Hill Fire, 2013: Yarnell Hill fire serious accident investigation report. Yarnell, AZ, 122 pp., https://docs.google.com/file/d/0B36DIycSgbzWSUtjNkl1Z2ROT0k/edit.

  • Zhang, D., K. L. Cummins, P. Bitzer, and W. J. Koshak, 2019: Evaluation of the performance characteristics of the lightning imaging sensor. J. Atmos. Oceanic Technol., 36, 10151031, https://doi.org/10.1175/JTECH-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 46
Full Text Views 0 0 0
PDF Downloads 0 0 0

Comparison of Lightning Forecasts from the High-Resolution Rapid Refresh Model to Geostationary Lightning Mapper Observations

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

The ability of the High-Resolution Rapid Refresh (HRRR) model to forecast the location of convective storms is of interest for a variety of applications. Since lightning is often present with intense convection, lightning observations from the Geostationary Lightning Mapper (GLM) on GOES-East are used to evaluate the performance of the HRRR lightning forecasts from May through September during 2018 and 2019. Model skill is presented in terms of the fractions skill score (FSS) evaluated within circular neighborhoods with radial distances from 30 to 240 km. Case studies of individual events illustrate that the HRRR lightning forecasts FSS varies from storm to storm. Mean FSS is summarized for the months with peak lightning activity (June–August) for the west, central, and east United States. Our results suggest that forecasters should use HRRR lightning forecasts to indicate general tendencies for the occurrence, region, and timing of thunderstorms in a broad region rather than expect high forecast accuracy for lightning locally. For example, when FSS is evaluated within small neighborhoods (30-km radius), mean FSS drops sharply after the first two hours of model integration in all regions and during all hours of the day. However, when evaluated within larger neighborhoods (60-km radius and larger), FSS in the western United States and northern Mexico remains high for all lead times in the late afternoon and early evening. This result is likely due to the model capturing the tendency for convection to break out over higher terrain during those hours.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian K. Blaylock, brian.blaylock@utah.edu

Abstract

The ability of the High-Resolution Rapid Refresh (HRRR) model to forecast the location of convective storms is of interest for a variety of applications. Since lightning is often present with intense convection, lightning observations from the Geostationary Lightning Mapper (GLM) on GOES-East are used to evaluate the performance of the HRRR lightning forecasts from May through September during 2018 and 2019. Model skill is presented in terms of the fractions skill score (FSS) evaluated within circular neighborhoods with radial distances from 30 to 240 km. Case studies of individual events illustrate that the HRRR lightning forecasts FSS varies from storm to storm. Mean FSS is summarized for the months with peak lightning activity (June–August) for the west, central, and east United States. Our results suggest that forecasters should use HRRR lightning forecasts to indicate general tendencies for the occurrence, region, and timing of thunderstorms in a broad region rather than expect high forecast accuracy for lightning locally. For example, when FSS is evaluated within small neighborhoods (30-km radius), mean FSS drops sharply after the first two hours of model integration in all regions and during all hours of the day. However, when evaluated within larger neighborhoods (60-km radius and larger), FSS in the western United States and northern Mexico remains high for all lead times in the late afternoon and early evening. This result is likely due to the model capturing the tendency for convection to break out over higher terrain during those hours.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian K. Blaylock, brian.blaylock@utah.edu
Save