• Adams, J. C., and P. N. Swarztrauber, 1997: Spherepack 2.0: A model development facility. NCAR Tech. Note NCAR/TN-436-STR, 62 pp., https://doi.org/10.5065/D6Z899CF.

    • Crossref
    • Export Citation
  • Beezley, J. D., and J. Mandel, 2008: Morphing ensemble Kalman filters. Tellus, 60A, 131140, https://doi.org/10.1111/j.1600-0870.2007.00275.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2003: Predictability as a function of scale. Atmos.–Ocean, 41, 203215, https://doi.org/10.3137/ao.410302.

  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., X. Deng, Y. Zhou, and R. Stull, 2006: Ozone ensemble forecasts: 1. A new ensemble design. J. Geophys. Res., 111, D05307, https://doi.org/10.1029/2005JD006310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 2000: Removal of distortion error from an ensemble forecast. Mon. Wea. Rev., 128, 33473351, https://doi.org/10.1175/1520-0493(2000)128<3347:RODEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., Z. Toth, and M. Peña, 2017: Spatially extended estimates of analysis and short-range forecast error variances. Tellus, 69A, 1325301, https://doi.org/10.1080/16000870.2017.1325301.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, J. Zhang, D. Liu, and R. Ding, 2019: The relationship between deterministic and ensemble mean forecast errors revealed by global and local attractor radii. Adv. Atmos. Sci., 36, 271278, https://doi.org/10.1007/s00376-018-8123-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galmarini, S., and Coauthors, 2004: Ensemble dispersion forecasting—Part I: Concept, approach and indicators. Atmos. Environ., 38, 46074617, https://doi.org/10.1016/j.atmosenv.2004.05.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmour, I., L. A. Smith, and R. Buizza, 2001: Linear regime duration: Is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sci., 58, 35253539, https://doi.org/10.1175/1520-0469(2001)058<3525:LRDIHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., Z. Liu, J. Louis, and C. Grassotti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770, https://doi.org/10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, https://doi.org/10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., R. Furrer, C. Tebaldi, and J. Cermak, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, https://doi.org/10.1175/2009JCLI3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., V. Kumar, A. Simon, A. Bhardwaj, T. Ghosh, and R. Ross, 2016: A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev. Geophys., 54, 336377, https://doi.org/10.1002/2015RG000513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., J. Feng, and R. Q. Ding, 2018: Attractor radius and global attractor radius and their application to the quantification of predictability limits. Climate Dyn., 51, 23592374, https://doi.org/10.1007/s00382-017-4017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The new ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., R. Hoffman, C. Grassotti, and J.-F. Louis, 2003: Feature calibration and alignment to represent model forecast errors: Empirical regularization. Quart. J. Roy. Meteor. Soc., 129, 195218, https://doi.org/10.1256/qj.02.18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, T. Auligné, and R. N. Hoffman, 2014: Application of feature calibration and alignment to high-resolution analysis: Examples using observations sensitive to cloud and water vapor. Mon. Wea. Rev., 142, 686702, https://doi.org/10.1175/MWR-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravela, S., 2007: Two extensions of data assimilation by field alignment. Computational Science— ICCS 2007( ICCS 2007), Y. Shi et al., Eds., Vol. 4487, Lecture Notes in Computer Science, Springer, 1147–1154, https://doi.org/10.1007/978-3-540-72584-8_150.

    • Crossref
    • Export Citation
  • Ravela, S., 2012: Quantifying uncertainty for coherent structures. Procedia Comput. Sci., 9, 11871196, https://doi.org/10.1016/j.procs.2012.04.128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravela, S., 2013: Generating a forecast by field coalescence. U.S. patent application US 13/904, 058, https://patents.google.com/patent/US9046627B2/en?inventor=ravela&oq=ravela.

  • Ravela, S., 2014: Spatial inference for coherent geophysical fluids by appearance and geometry. Proc. IEEE Winter Conf. on Applications of Computer Vision, Steamboat Springs, CO, IEEE, 925–932, https://doi.org/10.1109/WACV.2014.6836005.

    • Crossref
    • Export Citation
  • Ravela, S., 2015: Statistical inference for coherent fluids. Dynamic Data-Driven Environmental Systems Science (DyESS 2014), S. Ravela and A. Sandu, Eds., Vol. 8964, Lecture Notes in Computer Science, Springer, 121–133, https://doi.org/10.1007/978-3-319-25138-7_12.

    • Crossref
    • Export Citation
  • Ravela, S., K. Emanuel, and D. McLaughlin, 2007: Data assimilation by field alignment. Physica D, 230, 127145, https://doi.org/10.1016/j.physd.2006.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. K. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, https://doi.org/10.1175/MWR-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., 2019: A multiscale Alignment method for ensemble filtering with displacement errors. Mon. Wea. Rev., 147, 45534565, https://doi.org/10.1175/MWR-D-19-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Z. Toth, M. Peña, and E. Kalnay, 2018: Overview of weather and climate systems. Handbook of Hydrometeorological Ensemble Forecasting, Q. Duan et al., Eds., Springer, 35–65.

    • Crossref
    • Export Citation
  • Yuan, H., P. Schultz, E. Tollerud, D. Hou, Y. Zhu, M. Pena, M. Charles, and Z. Toth, 2019: Pseudo-precipitation: A continuous precipitation variable. NOAA Tech. Memo. OAR GSD-62, 15 pp., https://doi.org/10.25923/3h37-gp49.

    • Crossref
    • Export Citation
  • Zhou, B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303322, https://doi.org/10.1175/2009WAF2222289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of perturbations from an ensemble transform and an ensemble Kalman filter for the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, 2017: Performance of the NCEP Global Ensemble Forecast System in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., D. Hou, M. Wei, R. Wobus, J. Ma, B. Cui, and S. Moorthi, 2012: February 2012 upgrade of the NCEP Global Ensemble Forecast System (NAEFS). NOAA, 29 pp., https://www.emc.ncep.noaa.gov/gmb/yzhu/imp/i201109/GEFS_Science_20120208.pdf.

All Time Past Year Past 30 Days
Abstract Views 57 57 23
Full Text Views 5 5 0
PDF Downloads 5 5 0

A New Measure of Ensemble Central Tendency

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma, and Global Systems Division, NOAA/Earth System Research Laboratory/Oceanic and Atmospheric Research, Boulder, Colorado
  • 2 Global Systems Division, NOAA/Earth System Research Laboratory/Oceanic and Atmospheric Research, Boulder, Colorado
  • 3 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • 4 Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Ensemble prediction is a widely used tool in weather forecasting. In particular, the arithmetic mean (AM) of ensemble members is used to filter out unpredictable features from a forecast. AM is a pointwise statistical concept, providing the best sample-based estimate of the expected value of any single variable. The atmosphere, however, is a multivariate system with spatially coherent features characterized with strong correlations. Disregarding such correlations, the AM of an ensemble of forecasts removes not only unpredictable noise but also flattens features whose presence is still predictable, albeit with somewhat uncertain location. As a consequence, AM destroys the structure, and reduces the amplitude and variability associated with partially predictable features. Here we explore the use of an alternative concept of central tendency for the estimation of the expected feature (instead of single values) in atmospheric systems. Features that are coherent across ensemble members are first collocated to their mean position, before the AM of the aligned members is taken. Unlike earlier definitions based on complex variational minimization (field coalescence of Ravela and generalized ensemble mean of Purser), the proposed feature-oriented mean (FM) uses simple and computationally efficient vector operations. Though FM is still not a dynamically realizable state, a preliminary evaluation of ensemble geopotential height forecasts indicates that it retains more variance than AM, without a noticeable drop in skill. Beyond ensemble forecasting, possible future applications include a wide array of climate studies where the collocation of larger-scale features of interest may yield enhanced compositing results.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Zhang, jing.zhang98567@gmail.com

Abstract

Ensemble prediction is a widely used tool in weather forecasting. In particular, the arithmetic mean (AM) of ensemble members is used to filter out unpredictable features from a forecast. AM is a pointwise statistical concept, providing the best sample-based estimate of the expected value of any single variable. The atmosphere, however, is a multivariate system with spatially coherent features characterized with strong correlations. Disregarding such correlations, the AM of an ensemble of forecasts removes not only unpredictable noise but also flattens features whose presence is still predictable, albeit with somewhat uncertain location. As a consequence, AM destroys the structure, and reduces the amplitude and variability associated with partially predictable features. Here we explore the use of an alternative concept of central tendency for the estimation of the expected feature (instead of single values) in atmospheric systems. Features that are coherent across ensemble members are first collocated to their mean position, before the AM of the aligned members is taken. Unlike earlier definitions based on complex variational minimization (field coalescence of Ravela and generalized ensemble mean of Purser), the proposed feature-oriented mean (FM) uses simple and computationally efficient vector operations. Though FM is still not a dynamically realizable state, a preliminary evaluation of ensemble geopotential height forecasts indicates that it retains more variance than AM, without a noticeable drop in skill. Beyond ensemble forecasting, possible future applications include a wide array of climate studies where the collocation of larger-scale features of interest may yield enhanced compositing results.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Zhang, jing.zhang98567@gmail.com
Save