• Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, M. K., and et al. , 2018: Hurricane Weather Research and Forecasting (HWRF) model: 2018 scientific documentation. Developmental Testbed Center, accessed 22 April 2020, https://dtcenter.org/HurrWRF/users/docs/index.php.

  • Brier, G., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtney, J. B., and et al. , 2019a: Operational perspectives on tropical cyclone intensity change Part 1: Recent advances in intensity guidance. Trop. Cyclone Res. Rev., 8, 123133, https://doi.org/10.1016/j.tcrr.2019.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtney, J. B., and et al. , 2019b: Operational perspectives on tropical cyclone intensity change Part 2: Forecasts by operational agencies. Trop. Cyclone Res. Rev., 8, 226239, https://doi.org/10.1016/j.tcrr.2020.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSIRO, 2019: Software from Alan J. Miller. CSIRO, accessed 22 April 2020, https://wp.csiro.au/alanmiller/.

  • Davis, R. E., 1979: A search for short range climate predictability. Dyn. Atmos. Oceans, 3, 485497, https://doi.org/10.1016/0377-0265(79)90027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J., and et al. , 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. Desautels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1936: The use of multiple measurements in taxonomic problems. Ann. Eugen., 7, 179188, https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GFS, 2019: The Global Forecast System (GFS)—Global Spectral Model (GSM), GSM version 13.0.2. NOAA, accessed 22 April 2020, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.php.

  • Hogan, T. F., and et al. , 2014: The Navy global environmental model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

  • IHC, 2019: JTWC—2018 year in review. OFCM, 14 pp., https://www.ofcm.gov/meetings/TCORF/ihc19/session_1/04-Cherrett.pdf.

  • IMSL, 2019: IMSL Fortran numerical stat library. IMSL, accessed 22 April 2020, http://docs.roguewave.com/imsl/fortran/7.0/stat/stat.htm.

  • JTWC, 2018: Joint Typhoon Warning Center annual tropical cyclone report 2017. JTWC, 132 pp., https://www.metoc.navy.mil/jtwc/products/atcr/2017atcr.pdf.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and east Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and et al. , 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and C. W. Landsea, 1997: An El Niño–Southern Oscillation Climatology and Persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12, 633652, https://doi.org/10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. T. DeMaria, 2017: Forecasting tropical cyclone eye formation and dissipation in infrared imagery. Wea. Forecasting, 32, 21032116, https://doi.org/10.1175/WAF-D-17-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., and et al. , 2018: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev., 7, 85105, https://doi.org/10.6057/2018TCRR02.02.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., K. J. Berry, C. W. Landsea, and W. M. Gray, 1996: Artificial skill and validation in meteorological forecasting. Wea. Forecasting, 11, 153169, https://doi.org/10.1175/1520-0434(1996)011<0153:ASAVIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirce, C., 1884: The numerical measure of the success of predictions. Science, 4, 453454, https://doi.org/10.1126/science.ns-4.93.453-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc., 93, 371380, https://doi.org/10.1175/BAMS-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The automated tropical cyclone forecasting system (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304312, https://doi.org/10.1175/2007WAF2007028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. Kaplan, J. A. Knaff, M. DeMaria, and C. Sisko, 2011: A deterministic rapid intensification aid. Wea. Forecasting, 26, 579585, https://doi.org/10.1175/WAF-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SHIPS, 2019: SHIPS developmental data. CIRA, RAMMB, accessed 22 April 2020, http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp.

  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, https://doi.org/10.1175/MWR-D-11-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

All Time Past Year Past 30 Days
Abstract Views 141 141 18
Full Text Views 39 39 9
PDF Downloads 39 39 9

A Tropical Cyclone Rapid Intensification Prediction Aid for the Joint Typhoon Warning Center’s Areas of Responsibility

View More View Less
  • 1 NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado
  • | 2 Naval Research Laboratory, Monterey, California
  • | 3 Joint Typhoon Warning Center, Pearl Harbor, Hawaii
© Get Permissions
Restricted access

Abstract

In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ≈ 0.51 m s−1) increases in 24 h (RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in 48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when probabilities exceed 40%, and the latter are included as members of the operational intensity consensus forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodological weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies. Modifications to the deterministic forecasts that address these issues are presented, and newly derived and more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The performance from this test indicates the new RIPA—when compared to its predecessor—has improved probabilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov

Abstract

In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ≈ 0.51 m s−1) increases in 24 h (RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in 48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when probabilities exceed 40%, and the latter are included as members of the operational intensity consensus forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodological weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies. Modifications to the deterministic forecasts that address these issues are presented, and newly derived and more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The performance from this test indicates the new RIPA—when compared to its predecessor—has improved probabilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov
Save