• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agresti, A., 1990: Categorical Data Analysis. 1st ed. Wiley, 558 pp.

  • Balas, N., S. E. Nicholson, and D. Klotter, 2007: The relationship of rainfall variability in west central Africa to sea-surface temperature fluctuations. Int. J. Climatol., 27, 13351349, https://doi.org/10.1002/joc.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., S. Li, S. J. Mason, D. G. DeWitt, L. Goddard, and X. Gong, 2010: Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteor. Climatol., 49, 493520, https://doi.org/10.1175/2009JAMC2325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borbor-Mendoza, M., and Coauthors, 2016: WHO/WMO climate services for health: Improving public health decision-making in a new climate. WHO/WMO, 218 pp., https://public.wmo.int/en/resources/library/climate-services-health-case-studies.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, https://doi.org/10.1007/S00382-006-0175-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2020: Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ., 1, 215231, https://doi.org/10.1038/s43017-020-0040-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrillo, C. N., 1892: Disertación sobre las corrientes y estudios de la corriente Peruana de Humboldt. Bol. Soc. Geogr. Lima, 11, 72110.

    • Search Google Scholar
    • Export Citation
  • Cash, D. W., and J. Buizer, 2005: Knowledge–Action Systems for Seasonal to Interannual Climate Forecasting: Summary of a Workshop. National Academy Press, 44 pp., https://doi.org/10.17226/11204.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and D. C. Araneo, 2007: Alcances de El Niño como predictor del caudal de los ríos Andinos Argentinos. IMTA-TC, 22, 2335.

    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M.-H. Ramos, and F. Pappenberger, 2016: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol. Earth Syst. Sci., 20, 36013618, https://doi.org/10.5194/hess-20-3601-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M., A. Brookshaw, and S. Ineson, 2014: The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Manage., 1, 524, https://doi.org/10.1016/j.crm.2013.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985987, https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1935: The logic of inductive inference. J. Roy. Stat. Soc., 98, 3982, https://doi.org/10.2307/2342435.

  • Garreaud, R. D., and P. Aceituno, 2001: Interannual rainfall variability over the South American altiplano. J. Climate, 14, 27792789, https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, https://doi.org/10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity. J. Climate, 18, 651665, https://doi.org/10.1175/JCLI-3277.1.

  • Goddard, L., A. G. Barnston, and S. J. Mason, 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84, 17611782, https://doi.org/10.1175/BAMS-84-12-1761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16, 263280, https://doi.org/10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., 2005: Integrating seasonal climate prediction and agricultural models for insights into agricultural practice. Philos. Trans. Roy. Soc. London, B360, 20372047, https://doi.org/10.1098/rstb.2005.1747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and Coauthors, 2011: A weather and climate enterprise strategic implementation plan for generating and communicating forecast uncertainty information. Bull. Amer. Meteor. Soc., 92, 16511666, https://doi.org/10.1175/BAMS-D-11-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. Wiley, 292 pp.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and C. W. Landsea, 1997: An El Niño–Southern Oscillation climatology and persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12, 633652, https://doi.org/10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2020: Guidance on operational practices for objective seasonal forecasting. WMO 1246, 106 pp., https://library.wmo.int/doc_num.php?explnum_id=10314.

  • Lehmann, E. L., and J. P. Romano, 2005: Testing Statistical Hypotheses. 3rd ed. Springer, 784 pp.

  • Lin, J., and T. Qian, 2019: A new picture of the global impacts of El Niño–Southern Oscillation. Sci. Rep., 9, 17543, https://doi.org/10.1038/s41598-019-54090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and M. M. Timofeyeva, 2008: The first decade of long-lead U.S. seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 843854, https://doi.org/10.1175/2008BAMS2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and M. A. Saunders, 2002: Seasonal prediction of European spring precipitation from El Niño–Southern Oscillation and local sea-surface temperatures. Int. J. Climatol., 22, 114, https://doi.org/10.1002/joc.723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magana, V., J. Vázquez, J. Párez, and J. Pérez, 2003: Impact of El Niño on precipitation in Mexico. Geofis. Int., 42, 313330.

  • Mason, S. J., 2018: Guidance on verification of operational seasonal climate forecasts. WMO 1220, 81 pp., https://library.wmo.int/doc_num.php?explnum_id=4886.

  • Mason, S. J., and L. Goddard, 2001: Probabilistic precipitation anomalies associated with ENSO. Bull. Amer. Meteor. Soc., 82, 619638, https://doi.org/10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and A. P. Weigel, 2009: A generic forecast verification framework for administrative purposes. Mon. Wea. Rev., 137, 331349, https://doi.org/10.1175/2008MWR2553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1971: A note on the ranked probability score. J. Appl. Meteor., 10, 155156, https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1991: Forecast verification: Its complexity and dimensionality. Mon. Wea. Rev., 119, 15901601, https://doi.org/10.1175/1520-0493(1991)119<1590:FVICAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., C. Funk, and A. H. Fink, 2018: Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change, 165, 114127, https://doi.org/10.1016/j.gloplacha.2017.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2020: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, accessed 12 March 2020, https://www.R-project.org/.

  • Rahman, T., J. Buizer, and Z. Guido, 2016: The economic impact of seasonal drought forecast information service in Jamaica, 2014-15. Paper prepared for the U.S. Agency for International Development (USAID), 59 pp., https://www.climatelinks.org/sites/default/files/asset/document/Economic-Impact-of-Drought_Information_Service_FINAL.pdf.

  • Rodó, X., E. Baert, and F. A. Comín, 1997: Variations in seasonal rainfall in Southern Europe during the present century: Relationships with the North Atlantic Oscillation and the El Niño–-Southern Oscillation. Climate Dyn., 13, 275284, https://doi.org/10.1007/s003820050165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronchail, J., and R. Gallaire, 2006: ENSO and rainfall along the Zongo valley (Bolivia) from the Altiplano to the Amazon basin. Int. J. Climatol., 26, 12231236, https://doi.org/10.1002/joc.1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronghui, H., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130, 16531660, https://doi.org/10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., G. E. Bolton, A. N. Kleit, and A. L. Sears-Collins, 2006: A laboratory study of the benefits of including uncertainty information in weather forecasts. Wea. Forecasting, 21, 116122, https://doi.org/10.1175/WAF887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandjon, A. T., A. Nzeukou, and C. Tchawoua, 2012: Intraseasonal atmospheric variability and its interannual modulation in central Africa. Meteor. Atmos. Phys., 117, 167179, https://doi.org/10.1007/s00703-012-0196-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, P., and A. G. Patt, 2004: Cognition, caution, and credibility: The risks of climate forecast application. Risk Decis. Policy, 9, 7589, https://doi.org/10.1080/14664530490429968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulca, J., K. Takahashi, J.-C. Espinoza, M. Vuille, and W. Lavado-Casimiro, 2018: Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol., 38, 420435, https://doi.org/10.1002/joc.5185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, G. M., and R. Feinn, 2012: Using effect size-or why the p value is not enough. J. Grad. Med. Educ., 4, 279282, https://doi.org/10.4300/JGME-D-12-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tödter, J., and B. Ahrens, 2012: Generalization of the ignorance score: Continuous ranked version and its decomposition. Mon. Wea. Rev., 140, 20052017, https://doi.org/10.1175/MWR-D-11-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res., 105, 12 44712 460, https://doi.org/10.1029/2000JD900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijs, S. V., R. van Nooijen, and N. van de Giesen, 2010: Kullback–Leibler divergence as a forecast skill score with classic reliability–resolution–uncertainty decomposition. Mon. Wea. Rev., 138, 33873399, https://doi.org/10.1175/2010MWR3229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, https://doi.org/10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, R. M. B., 2010: Decomposition of the Brier score for weighted forecast-verification pairs. Quart. J. Roy. Meteor. Soc., 136, 13641370, https://doi.org/10.1002/qj.641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 196 196 68
Full Text Views 46 46 18
PDF Downloads 70 70 27

Seasonal Forecast Skill of ENSO Teleconnection Maps

View More View Less
  • 1 International Research Institute for Climate and Society, and Department of Earth and Environmental Sciences, Columbia University, Palisades, New York
  • 2 International Research Institute for Climate and Society, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant source of seasonal climate predictability. This study quantifies the historical impact of ENSO on seasonal precipitation through an update of the global ENSO teleconnection maps of Mason and Goddard. Many additional teleconnections are detected due to better handling of missing values and 20 years of additional, higher quality data. These global teleconnection maps are used as deterministic and probabilistic empirical seasonal forecasts in a verification study. The probabilistic empirical forecast model outperforms climatology in the tropics demonstrating the value of a forecast derived from the expected precipitation anomalies given the ENSO phase. Incorporating uncertainty due to SST prediction shows that teleconnection maps are skillful in predicting tropical precipitation up to a lead time of 4 months. The historical IRI seasonal forecasts generally outperform the empirical forecasts made with the teleconnection maps, demonstrating the additional value of state-of-the-art dynamical-based seasonal forecast systems. Additionally, the probabilistic empirical seasonal forecasts are proposed as reference forecasts for future skill assessments of real-time seasonal forecast systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-19-0235.s1.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan J. L. Lenssen, lenssen@iri.columbia.edu

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant source of seasonal climate predictability. This study quantifies the historical impact of ENSO on seasonal precipitation through an update of the global ENSO teleconnection maps of Mason and Goddard. Many additional teleconnections are detected due to better handling of missing values and 20 years of additional, higher quality data. These global teleconnection maps are used as deterministic and probabilistic empirical seasonal forecasts in a verification study. The probabilistic empirical forecast model outperforms climatology in the tropics demonstrating the value of a forecast derived from the expected precipitation anomalies given the ENSO phase. Incorporating uncertainty due to SST prediction shows that teleconnection maps are skillful in predicting tropical precipitation up to a lead time of 4 months. The historical IRI seasonal forecasts generally outperform the empirical forecasts made with the teleconnection maps, demonstrating the additional value of state-of-the-art dynamical-based seasonal forecast systems. Additionally, the probabilistic empirical seasonal forecasts are proposed as reference forecasts for future skill assessments of real-time seasonal forecast systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-19-0235.s1.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathan J. L. Lenssen, lenssen@iri.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 15.8 MB)
Save