• Aldrian, E., and R. Dwi Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 14351452, https://doi.org/10.1002/joc.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aldrian, E., L. Gates, and F. Widodo, 2007: Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor. Appl. Climatol., 87, 4159, https://doi.org/10.1007/s00704-006-0218-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • As-syakur, A. R., and et al. , 2014: Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol., 34, 38253839, https://doi.org/10.1002/joc.3939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and D. Nemoda, 2016: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting. Environmetrics, 27, 280292, https://doi.org/10.1002/env.2391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G. E., and D. R. Cox, 1964: An analysis of transformations. J. Roy. Stat. Soc.: Series B (Methodol.), 26, 211243.

  • Chang, C., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabernig, M., G. J. Mayr, J. W. Messner, and A. Zeileis, 2017: Spatial ensemble post-processing with standardized anomalies. Quart. J. Roy. Meteor. Soc., 143, 909916, https://doi.org/10.1002/qj.2975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: Hess opinions “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 33913404, https://doi.org/10.5194/hess-16-3391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esquivel, A., L. Llanos-Herrera, D. Agudelo, S. D. Prager, K. Fernandes, A. Rojas, J. J. Valencia, and J. Ramirez-Villegas, 2018: Predictability of seasonal precipitation across major crop growing areas in Colombia. Climate Serv., 12, 3647, https://doi.org/10.1016/j.cliser.2018.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraisse, C., and et al. , 2006: AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Comput. Electron. Agric., 53, 1327, https://doi.org/10.1016/j.compag.2006.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hameed, S., B. N. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., S. J. Mason, L. Sun, and A. Tall, 2011: Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Exp. Agric., 47, 205240, https://doi.org/10.1017/S0014479710000876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidayat, R., K. Ando, Y. Masumoto, and J. Luo, 2016: Interannual variability of rainfall over Indonesia: Impacts of ENSO and IOD and their predictability. IOP Conf. Series: Earth Env. Sci., 31, 012043, https://doi.org/10.1088/1755-1315/31/1/012043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and et al. , 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirono, D. G., and N. J. Tapper, 1999: ENSO rainfall variability and impacts on crop production in Indonesia. Phys. Geogr., 20, 508519, https://doi.org/10.1080/02723646.1999.10642693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirono, D. G., J. R. Butler, J. L. McGregor, A. Ripaldi, J. Katzfey, and K. Nguyen, 2016: Historical and future seasonal rainfall variability in Nusa Tenggara Barat province, Indonesia: Implications for the agriculture and water sectors. Climate Risk Manage., 12, 4558, https://doi.org/10.1016/j.crm.2015.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuswanto, H., and D. Rahadiyuza, 2018: Multi model calibration of rainfall forecasts in east Nusa Tenggara using ensemble model output statistics. J. Phys. Conf. Ser., 1028, 012231, https://doi.org/10.1088/1742-6596/1028/1/012231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., 2015: General rainfall patterns in Indonesia and the potential impacts of local seas on rainfall intensity. Water, 7, 17511768, https://doi.org/10.3390/w7041751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S., and S. Baran, 2017: Similarity-based semilocal estimation of post-processing models. J. Roy. Stat. Soc.: Ser. C Appl. Stat., 66, 2951, https://doi.org/10.1111/rssc.12153.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, https://doi.org/10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinke, H., and R. C. Stone, 2005: Seasonal and inter-annual climate forecasting: The new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Climatic Change, 70, 221253, https://doi.org/10.1007/s10584-005-5948-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messner, J. W., G. J. Mayr, D. S. Wilks, and A. Zeileis, 2014: Extending extended logistic regression: Extended versus separate versus ordered versus censored. Mon. Wea. Rev., 142, 30033014, https://doi.org/10.1175/MWR-D-13-00355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messner, J. W., G. J. Mayr, and A. Zeileis, 2016: Heteroscedastic censored and truncated regression with CRCH. R J., 8, 173181, https://doi.org/10.32614/RJ-2016-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate, 12, 22562284, https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, R. L., D. S. Battisti, D. J. Vimont, W. P. Falcon, and M. B. Burke, 2007: Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc. Natl. Acad. Sci. USA, 104, 77527757, https://doi.org/10.1073/pnas.0701825104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nur’utami, M. N., and R. Hidayat, 2016: Influences of IOD and ENSO to Indonesian rainfall variability: Role of atmosphere-ocean interaction in the Indo-Pacific sector. Proc. Environ. Sci., 33, 196203, https://doi.org/10.1016/j.proenv.2016.03.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratri, D. N., K. Whan, and M. Schmeits, 2019: A comparative verification of raw and bias-corrected ECMWF seasonal ensemble precipitation reforecasts in java (Indonesia). J. Appl. Meteor. Climatol., 58, 17091723, https://doi.org/10.1175/JAMC-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9, 10431059, https://doi.org/10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakamoto, Y., M. Ishiguro, and G. Kitagawa, 1986: Akaike Information Criterion Statistics. D. Reidel, 81 pp.

  • Satyawardhana, H., Trismidianto, and E. Yulihastin, 2018: Influence of ENSO on deviation of the season onset in Java based on CCAM downscaling data. IOP Conf. Ser.: Earth Environ. Sci., 166, 012030, https://doi.org/10.1088/1755-1315/166/1/012030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawano, S., T. Hasegawa, S. Goto, P. Konghakote, A. Polthanee, Y. Ishigooka, T. Kuwagata, and H. Toritani, 2008: Modeling the dependence of the crop calendar for rain-fed rice on precipitation in northeast Thailand. Paddy Water Environ., 6, 8390, https://doi.org/10.1007/s10333-007-0102-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. Wang, and D. E. Robertson, 2014: Seasonal forecasts of Australian rainfall through calibration and bridging of coupled GCM outputs. Mon. Wea. Rev., 142, 17581770, https://doi.org/10.1175/MWR-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somboonsuke, B., P. Phitthayaphinant, S. Sdoodee, and C. Kongmanee, 2018: Farmers’ perceptions of impacts of climate variability on agriculture and adaptation strategies in Songkhla Lake basin. Kasetsart J. Soc. Sci., 39, 277283, https://doi.org/10.1016/j.kjss.2018.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R., N. Umlauf, J. W. Messner, G. J. Mayr, and A. Zeileis, 2017: Ensemble postprocessing of daily precipitation sums over complex terrain using censored high-resolution standardized anomalies. Mon. Wea. Rev., 145, 955969, https://doi.org/10.1175/MWR-D-16-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Supari, S., and et al. , 2018: ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dyn., 51, 25592580, https://doi.org/10.1007/s00382-017-4028-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Besselaar, E. J., G. Van der Schrier, R. C. Cornes, A. S. Iqbal, and A. M. Klein Tank, 2017: SA-OBS: A daily gridded surface temperature and precipitation dataset for Southeast Asia. J. Climate, 30, 51515165, https://doi.org/10.1175/JCLI-D-16-0575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Straaten, C., K. Whan, and M. Schmeits, 2018: Statistical postprocessing and multivariate structuring of high-resolution ensemble precipitation forecasts. J. Hydrometeor., 19, 18151833, https://doi.org/10.1175/JHM-D-18-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2001: A skill score based on economic value for probability forecasts. Meteor. Appl., 8, 209219, https://doi.org/10.1017/S1350482701002092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Zhao, T., J. C. Bennett, Q. Wang, A. Schepen, A. W. Wood, D. E. Robertson, and M.-H. Ramos, 2017: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 31853196, https://doi.org/10.1175/JCLI-D-16-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 557 557 77
Full Text Views 49 49 11
PDF Downloads 69 69 15

Calibration of ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia) Using Bias-Corrected Precipitation and Climate Indices

View More View Less
  • 1 a Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
  • | 2 b Wageningen University and Research, Wageningen, Netherlands
  • | 3 c Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, Maurice.Schmeits@knmi.nl

Abstract

The seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, Maurice.Schmeits@knmi.nl
Save