• Ahmadalipour, A., and H. Moradkhani, 2019: A data-driven analysis of flash flood hazard, fatalities, and damages over the CONUS during 1996–2017. J. Hydrol., 578, 124106, https://doi.org/10.1016/j.jhydrol.2019.124106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthold, F. E., T. E. Workoff, B. A. Cosgrove, J. J. Gourley, D. R. Novak, and K. M. Mahoney, 2015: Improving flash flood forecasts: The HMT-WPC flash flood and intense rainfall experiment. Bull. Amer. Meteor. Soc., 96, 18591866, https://doi.org/10.1175/BAMS-D-14-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brocca, L., F. Melone, and T. Moramarco, 2008: On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Processes, 22, 629642, https://doi.org/10.1002/hyp.6629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, A., N. Snook, D. J. Gagne II, S. McCorkle, and A. McGovern, 2020: Calibration of machine learning–based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149168, https://doi.org/10.1175/WAF-D-19-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and T.-C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, https://doi.org/10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. A., J. J. Gourley, Z. L. Flamig, Y. Hong, and E. Clark, 2014: CONUS-wide evaluation of National Weather Service flash flood guidance products. Wea. Forecasting, 29, 377392, https://doi.org/10.1175/WAF-D-12-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, https://doi.org/10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, M. J., J. Kastman, B. Albright, S. Perfater, J. Nelson, R. Schumacher, and G. Herman, 2019: Verification results from the 2017 HMT–WPC flash flood and intense rainfall experiment. J. Appl. Meteor. Climatol., 58, 25912604, https://doi.org/10.1175/JAMC-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, M. J., B. Albright, and J. A. Nelson, 2021: Verifying and redefining the Weather Prediction Center’s Excessive Rainfall Outlook forecast product. Wea. Forecasting, 36, 325340, https://doi.org/10.1175/WAF-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast system. Mon. Wea. Rev., 149, 15351557, https://doi.org/10.1175/MWR-D-20-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 10241043, https://doi.org/10.1175/WAF-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goines, D. C., and A. D. Kennedy, 2018: Precipitation from a multiyear database of convection-allowing WRF simulations. J. Geophys. Res. Atmos., 123, 24242453, https://doi.org/10.1002/2016JD026068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2013: A unified flash flood database across the United States. Bull. Amer. Meteor. Soc., 94, 799805, https://doi.org/10.1175/BAMS-D-12-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and H. Vergara, 2021: Comments on “Flash flood verification: Pondering precipitation proxies.” J. Hydrometeor., 22, 739747, https://doi.org/10.1175/JHM-D-20-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Extreme precipitation in models: An evaluation. Wea. Forecasting, 31, 18531879, https://doi.org/10.1175/WAF-D-16-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018a: Flash flood verification: Pondering precipitation proxies. J. Hydrometeor., 19, 17531776, https://doi.org/10.1175/JHM-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018b: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 15711600, https://doi.org/10.1175/MWR-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting severe weather with random forests. Mon. Wea. Rev., 148, 21352161, https://doi.org/10.1175/MWR-D-19-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of Stage-IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, https://doi.org/10.1175/WAF-D-12-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, A. McGovern, M. Flora, and K. Knopfmeier, 2019: Postprocessing next-day ensemble probabilistic precipitation forecasts using random forests. Wea. Forecasting, 34, 20172044, https://doi.org/10.1175/WAF-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, and C. D. Karstens, 2020: Generating probabilistic next-day severe weather forecasts from convection-allowing ensembles using random forests. Wea. Forecasting, 35, 16051631, https://doi.org/10.1175/WAF-D-19-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marjerison, R. D., M. T. Walter, P. J. Sullivan, and S. J. Colucci, 2016: Does population affect the location of flash flood reports? J. Appl. Meteor. Climatol., 55, 19531963, https://doi.org/10.1175/JAMC-D-15-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2020: Billion-dollar weather and climate disasters: Summary stats. U.S. billion-dollar weather and climate disasters (2020). NOAA/National Centers for Environmental Information (NCEI), accessed 31 August 2020, https://www.ncdc.noaa.gov/billions/summary-stats/US/2010-2019.

  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/Weather Prediction Center, 2021: Excessive rainfall outlooks. NOAA, accessed 21 January 2021, https://www.wpc.ncep.noaa.gov/html/fam2.shtml#excessrain.

  • Novak, D. R., C. Bailey, K. F. Brill, P. Burke, W. A. Hogsett, R. Rausch, and M. Schichtel, 2014: Precipitation and temperature forecast performance at the Weather Prediction Center. Wea. Forecasting, 29, 489504, https://doi.org/10.1175/WAF-D-13-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, F., H. Sharif, S. Senarath, J. Smith, M. Baeck, and J. Richardson, 2000: Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., 228, 82100, https://doi.org/10.1016/S0022-1694(00)00146-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, https://doi.org/10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Nat. Hazard Sci., https://doi.org/10.1093/acrefore/9780199389407.013.132.

  • Schumacher, R. S., and G. R. Herman, 2021: Reply to “Comments on ‘Flash flood verification: Pondering precipitation proxies.’” J. Hydrometeor., 22, 749752, https://doi.org/10.1175/JHM-D-20-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., A. J. Hill, M. Klein, J. Nelson, M. Erickson, and G. R. Herman, 2021: From random forests to flood forecasts: A research to operations success story. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0186.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern United States. Mon. Wea. Rev., 147, 44114435, https://doi.org/10.1175/MWR-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, J. A., A. J. Miller, M. L. Baeck, P. A. Nelson, G. T. Fisher, and K. L. Meierdiercks, 2005: Extraordinary flood response of a small urban watershed to short-duration convective rainfall. J. Hydrometeor., 6, 599617, https://doi.org/10.1175/JHM426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, and C. S. Schwartz, 2020: A comparison of neural-network and surrogate-severe probabilistic convective hazard guidance derived from a convection-allowing model. Wea. Forecasting, 35, 19812000, https://doi.org/10.1175/WAF-D-20-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., and R. S. Schumacher, 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 31473162, https://doi.org/10.1175/MWR-D-13-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, https://doi.org/10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweeney, T. L., 1992: Modernized areal flash flood guidance. NOAA Tech. Memo. NWS HYDRO 44, NOAA, 37 pp., https://repository.library.noaa.gov/view/noaa/13498.

  • Trojniak, S., and B. Albright, 2019: 2019 flash flood and intense rainfall experiment: Findings and results. NOAA, 123 pp., https://www.wpc.ncep.noaa.gov/hmt/Final_Report_2019_FFaIR.pdf.

  • Trojniak, S., J. Correia Jr., and B. Albright, 2020: 2020 flash flood and intense rainfall experiment: Findings and results. NOAA, 99 pp., https://www.wpc.ncep.noaa.gov/hmt/Final_Report_2020_FFaIR_Experiment_Nov13.pdf.

  • Whan, K., and M. Schmeits, 2018: Comparing area-probability forecasts of (extreme) local precipitation using parametric and machine learning statistical post-processing methods. Mon. Wea. Rev., 146, 36513673, https://doi.org/10.1175/MWR-D-17-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M., G. Romine, and C. Snyder, 2020: Model improvement via systematic investigation of physics tendencies. Mon. Wea. Rev., 148, 671688, https://doi.org/10.1175/MWR-D-19-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Tang, S. Cocks, P. Zhang, A. Ryzhkov, K. Howard, C. Langston, and B. Kaney, 2020: A dual-polarization radar synthetic QPE for operations. J. Hydrometeor., 21, 25072521, https://doi.org/10.1175/JHM-D-19-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 634 500 33
Full Text Views 270 202 15
PDF Downloads 271 195 16

Forecasting Excessive Rainfall with Random Forests and a Deterministic Convection-Allowing Model

View More View Less
  • 1 aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Approximately seven years of daily initializations from the convection-allowing National Severe Storms Laboratory Weather Research and Forecasting Model are used as inputs to train random forest (RF) machine learning models to probabilistically predict instances of excessive rainfall. Unlike other hazards, excessive rainfall does not have an accepted definition, so multiple definitions of excessive rainfall and flash flooding—including flash flood reports and 24-h average recurrence intervals (ARIs)—are used to explore RF configuration forecast sensitivities. RF forecasts are analogous to operational Weather Prediction Center (WPC) day-1 Excessive Rainfall Outlooks (EROs) and their resolution, reliability, and skill are strongly influenced by rainfall definitions and how inputs are assembled for training. Models trained with 1-yr ARI exceedances defined by the Stage-IV (ST4) precipitation analysis perform poorly in the northern Great Plains and Southwest United States, in part due to a high bias in the number of training events in these regions. Increasing the ARI threshold to 2 years or removing ST4 data from training, optimizing forecast skill geographically, and spatially averaging meteorological inputs for training generally results in improved CONUS-wide RF forecast skill. Both EROs and RF forecasts have seasonal skill—–poor forecasts in the late fall and winter and skillful forecasts in the summer and early fall. However, the EROs are consistently and significantly better than their RF counterparts, regardless of RF configuration, particularly in the summer months. The results suggest careful consideration should be made when developing ML-based probabilistic precipitation forecasts with convection-allowing model inputs, and further development is necessary to consider these forecast products for operational implementation.

Significance Statement

Machine learning (ML) models can deduce statistical relationships between a set of predictors and meteorological events. In this work, ML models are developed to predict excessive rainfall events. Since excessive rainfall is difficult to uniformly define across the United States, multiple ML models are built from a variety of rainfall datasets with predictors gathered from output of a high-resolution numerical weather prediction model and forecasts are made from each model. Forecasts made from these models are highly sensitive to both the definitions of excessive rainfall (e.g., 100 mm of rain in a day may cause flooding in a usually dry area, but not in a wet area) and the predictors used. Forecast skill can increase when excessive rainfall events are rarer and when predictors synthesize the surrounding environment rather than characterize specific geographical points. ML-based models have great potential for excessive rainfall prediction, but careful attention to the configuration of these models is required.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron J. Hill, aaron.hill@colostate.edu

Abstract

Approximately seven years of daily initializations from the convection-allowing National Severe Storms Laboratory Weather Research and Forecasting Model are used as inputs to train random forest (RF) machine learning models to probabilistically predict instances of excessive rainfall. Unlike other hazards, excessive rainfall does not have an accepted definition, so multiple definitions of excessive rainfall and flash flooding—including flash flood reports and 24-h average recurrence intervals (ARIs)—are used to explore RF configuration forecast sensitivities. RF forecasts are analogous to operational Weather Prediction Center (WPC) day-1 Excessive Rainfall Outlooks (EROs) and their resolution, reliability, and skill are strongly influenced by rainfall definitions and how inputs are assembled for training. Models trained with 1-yr ARI exceedances defined by the Stage-IV (ST4) precipitation analysis perform poorly in the northern Great Plains and Southwest United States, in part due to a high bias in the number of training events in these regions. Increasing the ARI threshold to 2 years or removing ST4 data from training, optimizing forecast skill geographically, and spatially averaging meteorological inputs for training generally results in improved CONUS-wide RF forecast skill. Both EROs and RF forecasts have seasonal skill—–poor forecasts in the late fall and winter and skillful forecasts in the summer and early fall. However, the EROs are consistently and significantly better than their RF counterparts, regardless of RF configuration, particularly in the summer months. The results suggest careful consideration should be made when developing ML-based probabilistic precipitation forecasts with convection-allowing model inputs, and further development is necessary to consider these forecast products for operational implementation.

Significance Statement

Machine learning (ML) models can deduce statistical relationships between a set of predictors and meteorological events. In this work, ML models are developed to predict excessive rainfall events. Since excessive rainfall is difficult to uniformly define across the United States, multiple ML models are built from a variety of rainfall datasets with predictors gathered from output of a high-resolution numerical weather prediction model and forecasts are made from each model. Forecasts made from these models are highly sensitive to both the definitions of excessive rainfall (e.g., 100 mm of rain in a day may cause flooding in a usually dry area, but not in a wet area) and the predictors used. Forecast skill can increase when excessive rainfall events are rarer and when predictors synthesize the surrounding environment rather than characterize specific geographical points. ML-based models have great potential for excessive rainfall prediction, but careful attention to the configuration of these models is required.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron J. Hill, aaron.hill@colostate.edu
Save