• Abdella, K., and N. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci., 54, 18501867, https://doi.org/10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aligo, E. A., B. Ferrier, and J. R. Carley, 2018: Modified NAM microphysics for forecasts of deep convective storms. Mon. Wea. Rev., 146, 41154153, https://doi.org/10.1175/MWR-D-17-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128, https://doi.org/10.1175/2010BAMS2797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, T. L., and Coauthors, 2021: A limited area modeling capability for the finite-volume cubed-sphere (FV3) dynamical core and comparison with a global two-way nest. J. Adv. Model. Earth Syst., 13, e2021MS002483, https://doi.org/10.1029/2021MS002483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and Coauthors, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, https://doi.org/10.1007/s10546-014-9919-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., 2010: The skill of ECMWF medium-range forecasts during the year of tropical convection 2008. Mon. Wea. Rev., 138, 37873805, https://doi.org/10.1175/2010MWR3217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations. J. Atmos. Sci., 63, 11511178, https://doi.org/10.1175/JAS3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., T. C. Pagano, and Q. J. Wang, 2011: A review of quantitative precipitation forecasts and their use in short-to medium-range streamflow forecasting. J. Hydrometeor., 12, 713728, https://doi.org/10.1175/2011JHM1347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., and Coauthors, 2006: Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, https://doi.org/10.1016/j.jhydrol.2005.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 1999: A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer. Bound.-Layer Meteor., 90, 529539, https://doi.org/10.1023/A:1001756912935.

    • Search Google Scholar
    • Export Citation
  • Firl, G., L. Carson, M. Harrold, L. Bernardet, and D. Heinzeller, 2020: Common community physics package single column model (SCM) v4.1.0 user and technical guide. DTC Tech. Rep., 43 pp., https://dtcenter.org/sites/default/files/paragraph/scm-ccpp-guide-v4.1.0.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and C. S. Bretherton, 2019: TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Wea. Forecasting, 34, 869886, https://doi.org/10.1175/WAF-D-18-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp., https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.5434&rep=rep1&type=pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and L. Mahrt, 1992: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus, 44A, 381394, https://doi.org/10.3402/tellusa.v44i5.14969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamberson, W. S., R. D. Torn, L. F. Bosart, and L. Magnusson, 2016: Diagnosis of the source and evolution of medium-range forecast errors for extratropical cyclone Joachim. Wea. Forecasting, 31, 11971214, https://doi.org/10.1175/WAF-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and A. A. Holtslag, 2004: An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 130, 34053427, https://doi.org/10.1256/qj.03.117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note 321, 24 pp., https://repository.library.noaa.gov/view/noaa/11489.

    • Search Google Scholar
    • Export Citation
  • Long, P. E., 1990: Derivation and suggested method of the application of simplified relations for surface fluxes in the medium-range forecast model, unstable case. NCEP Office Note 356, 53 pp., https://repository.library.noaa.gov/view/noaa/11462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. A., and S. S. Girimaji, 2017: Toward approximating non-local dynamics in single-point pressure–strain correlation closures. J. Fluid Mech., 811, 168188, https://doi.org/10.1017/jfm.2016.730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. A. Sauer, R. R. Linn, and B. Kosović, 2016: Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows. J. Atmos. Sci., 73, 26032614, https://doi.org/10.1175/JAS-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. NOAA Tech. Memo. OAR GSD-61, 42 pp., https://doi.org/10.25923/n9wm-be49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., 2007 : Development of the finite-volume dynamical core on the cubed-sphere. Ph.D. dissertation, The Florida State University, 102 pp., https://diginole.lib.fsu.edu/islandora/object/fsu%3A168667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 137144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodier, Q., V. Masson, F. Couvreux, and A. Paci, 2017: Evaluation of a buoyancy and shear based mixing length for a turbulence scheme. Front. Earth Sci., 5, 65, https://doi.org/10.3389/feart.2017.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2011: Vertical variations of mixing lengths under neutral and stable conditions during CASES-99. J. Appl. Meteor. Climatol., 50, 20302041, https://doi.org/10.1175/JAMC-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tastula, E.-M., B. Galperin, J. Dudhia, M. A. LeMone, S. Sukoriansky, and T. Vihma, 2015: Methodical assessment of the differences between the QNSE and MYJ PBL schemes for stable conditions. Quart. J. Roy. Meteor. Soc., 141, 20772089, https://doi.org/10.1002/qj.2503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and S. Cheinet, 2004: A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection. Bound.-Layer Meteor., 110, 435453, https://doi.org/10.1023/B:BOUN.0000007230.96303.0d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Z. Kuang, 2016: Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge. Geophys. Res. Lett., 43, 40564065, https://doi.org/10.1002/2016GL069005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voudouri, A., P. Khain, I. Carmona, E. Avgoustoglou, P. Kaufmann, F. Grazzini, and J. Bettems, 2018: Optimization of high resolution COSMO model performance over Switzerland and northern Italy. Atmos. Res., 213, 7085, https://doi.org/10.1016/j.atmosres.2018.05.026.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Atmospheric Boundary Layers, A. Baklanov and B. Grisogono, Eds., Springer, 1135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 483 279 33
Full Text Views 284 267 39
PDF Downloads 109 91 43

A Single-Column Model Evaluation of Mixing Length Formulations and Constraints for the sa-TKE-EDMF Planetary Boundary Layer Parameterization

View More View Less
  • 1 aI.M. Systems Group, Inc., NOAA/NWS/NCEP/EMC, College Park, Maryland
Restricted access

Abstract

Parameterizing boundary layer turbulence is a critical component of numerical weather prediction and the representation of turbulent mixing of momentum, heat, and other tracers. The components that make up a boundary layer scheme can vary considerably, with each scheme having a combination of processes that are physically represented along with tuning parameters that optimize performance. Isolating a component of a PBL scheme to examine its impact is essential for understanding the evolution of boundary layer profiles and their impact on the mean structure. In this study we conduct three experiments with the scale-aware TKE eddy-diffusivity mass-flux (sa-TKE-EDMF) scheme: 1) releasing the upper limit constraints placed on mixing lengths, 2) incrementally adjusting the tuning coefficient related to wind shear in the modified Bougeault and Lacarrere (BouLac) mixing length formulation, and 3) replacing the current mixing length formulations with those used in the MYNN scheme. A diagnostic approach is adopted to characterize the bulk representation of turbulence within the residual layer and boundary layer in order to understand the importance of different terms in the TKE budget as well as to assess how the balance of terms changes between mixing length formulations. Although our study does not seek to determine the best formulation, it was found that strong imbalances led to considerably different profile structures both in terms of the resolved and subgrid fields. Experiments where this balance was preserved showed a minor impact on the mean structure regardless of the turbulence generated. Overall, it was found that changes to mixing length formulations and/or constraints had stronger impacts during the day while remaining partially insensitive during the evening.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward J. Strobach, edward.strobach@noaa.gov

Abstract

Parameterizing boundary layer turbulence is a critical component of numerical weather prediction and the representation of turbulent mixing of momentum, heat, and other tracers. The components that make up a boundary layer scheme can vary considerably, with each scheme having a combination of processes that are physically represented along with tuning parameters that optimize performance. Isolating a component of a PBL scheme to examine its impact is essential for understanding the evolution of boundary layer profiles and their impact on the mean structure. In this study we conduct three experiments with the scale-aware TKE eddy-diffusivity mass-flux (sa-TKE-EDMF) scheme: 1) releasing the upper limit constraints placed on mixing lengths, 2) incrementally adjusting the tuning coefficient related to wind shear in the modified Bougeault and Lacarrere (BouLac) mixing length formulation, and 3) replacing the current mixing length formulations with those used in the MYNN scheme. A diagnostic approach is adopted to characterize the bulk representation of turbulence within the residual layer and boundary layer in order to understand the importance of different terms in the TKE budget as well as to assess how the balance of terms changes between mixing length formulations. Although our study does not seek to determine the best formulation, it was found that strong imbalances led to considerably different profile structures both in terms of the resolved and subgrid fields. Experiments where this balance was preserved showed a minor impact on the mean structure regardless of the turbulence generated. Overall, it was found that changes to mixing length formulations and/or constraints had stronger impacts during the day while remaining partially insensitive during the evening.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward J. Strobach, edward.strobach@noaa.gov
Save