• Andra, D. L., Jr., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision-making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, E. S., R. L. Thompson, B. R. Bowers, J. G. Gibbs, and S. E. Nelson, 2021: An analysis of 2016–18 tornadoes and National Weather Service tornado warnings across the contiguous United States. Wea. Forecasting, 36, 19091924, https://doi.org/10.1175/WAF-D-20-0241.1.

    • Search Google Scholar
    • Export Citation
  • Berkson, J., 1944: Application of the logistic function to bio-assay. J. Amer. Stat. Assoc., 39, 357365, https://doi.org/10.2307/2280041.

  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, https://doi.org/10.1175/MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/pdfpapers/47482.pdf.

    • Crossref
    • Export Citation
  • Bowden, K. A., and P. L. Heinselman, 2016: A qualitative analysis of NWS forecasters’ use of phased-array radar data during severe hail and wind events. Wea. Forecasting, 31, 4355, https://doi.org/10.1175/WAF-D-15-0089.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2010: Tornadoes without NWS warning. Wea. Forecasting, 25, 159172, https://doi.org/10.1175/2009WAF2222270.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Nelson, R. Thompson, and B. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, https://doi.org/10.1175/WAF-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., J. M. Janish, and V. T. Wood, 2000: Impact of WSR-88D scanning strategies on severe storm algorithms. Wea. Forecasting, 15, 90102, https://doi.org/10.1175/1520-0434(2000)015<0090:IOWSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, R. Atlas, Ed., Amer. Meteor. Soc., 619647.

  • Cho, J. Y. N., and J. M. Kurdzo, 2019a: Monetized weather radar network benefits for tornado cost reduction. Project Rep. NOAA-35, MIT Lincoln Laboratory, 88 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/monetized-weather-radar-network-benefits-cho-noaa-35.pdf.

  • Cho, J. Y. N., and J. M. Kurdzo, 2019b: Weather radar network benefit model for tornadoes. J. Appl. Meteor. Climatol., 58, 971987, https://doi.org/10.1175/JAMC-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2020a: Weather radar network benefit model for flash flood casualty reduction. J. Appl. Meteor. Climatol., 59, 589604, https://doi.org/10.1175/JAMC-D-19-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2020b: Weather radar network benefit model for nontornadic thunderstorm wind casualty reduction. Wea. Climate Soc., 12, 789804, https://doi.org/10.1175/WCAS-D-20-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2013: Dynamic scanning. NEXRAD Now, No. 22, NOAA/NWS/Radar Operations Center, Norman, Oklahoma, 13, https://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow22c.pdf.

    • Crossref
    • Export Citation
  • Chrisman, J. N., 2014: The continuing evolution of dynamic scanning. NEXRAD Now, No. 23, NOAA/NWS/Radar Operations Center, Norman, Oklahoma, 813, http://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow23a.pdf.

    • Crossref
    • Export Citation
  • Chrisman, J. N., 2016: Mid-volume Rescan of Low-level Elevations (MRLE): A new approach to enhance sampling of Quasi-Linear Convective Systems (QLCSs). New Radar Technologies, NOAA/NWS/Radar Operations Center, 21 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/DQ_QLCS_MRLE_June_2016.pdf.

  • Coleman, T. A., A. W. Lyza, K. R. Knupp, K. Laws, and W. Wyatt, 2018: A significant tornado in a heterogeneous environment during VORTEX-SE.Electron. J. Severe Storms Meteor., 13 (2), https://ejssm.org/archives/2018/vol-13-2-2018/.

  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the Upper Midwest and Central Plains of the United States. Wea. Forecasting, 22, 244254, https://doi.org/10.1175/WAF1008.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

    • Crossref
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P., D. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Crossref
    • Export Citation
  • Kirstetter, P.-E., H. Andrieu, G. Delrieu, and B. Boudevillain, 2010: Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification. J. Appl. Meteor. Climatol., 49, 21672180, https://doi.org/10.1175/2010JAMC2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the atmospheric imaging radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., J. Y. N. Cho, and B. J. Bennett, 2021: Impact of WSR-88D SAILS usage on quantitative precipitation estimation accuracy. 37th Conf. on Environmental Information Processing Technologies: Radar Technologies and Applications, online, Amer. Meteor. Soc., 10.2, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/378382.

    • Crossref
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, Ltd., 407 pp., https://doi.org/10.1002/9780470682104.

    • Crossref
    • Export Citation
  • Melendez, D., K. Abshire, and J. Sokich, 2018: NEXRAD weather radar coverage and National Weather Service warning performance. 2018 Fall Meeting, Washington, DC, Amer. Geophys. Union, Abstract A11K-2394, https://doi.org/10.1002/essoar.10500135.1.

  • NOAA, 2020: Weather radar follow-on plan: Research and risk reduction to inform acquisition decisions. Report to Congress, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration., 21 pp., https://www.nssl.noaa.gov/publications/mpar_reports/RadarFollowOnPlan_ReporttoCongress_2020June_Final.pdf.

    • Crossref
    • Export Citation
  • NWS, 2009: Verification procedures. NWSPD 10-16, Operations and Services, National Weather Service, 83 pp., http://www.nws.noaa.gov/directives/010/archive/pd01016001d.pdf.

    • Crossref
    • Export Citation
  • Pobocikova, I., 2010: Better confidence intervals for a binomial proportion. Communications, 12, 3137, 10.26552/com.C.2010.1.31-37.

    • Crossref
    • Export Citation
  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. S. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, https://doi.org/10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rees, D. G., 2001: Essential Statistics. 4th ed. Chapman and Hall/CRC, 384 pp.

  • Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1999: Systematic phase codes for resolving range overlaid signals in a Doppler weather radar. J. Atmos. Oceanic Technol., 16, 13511363, https://doi.org/10.1175/1520-0426(1999)016<1351:SPCFRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaumann, J. S., and R. W. Przbylinski, 2012: Operational application of 0–3 km bulk shear vectors in assessing QLCS mesovortex and tornado potential. 26th Conf. on Severe Local Storms, New Orleans, LA, Amer. Meteor. Soc., P9.10, https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper212008/SchaumannSLS2012_P142.pdf.

  • Schmocker, G. K., R. W. Przybylinksi, and Y.-J. Lin, 1996: Forecasting the initial onset of damaging winds associated with a mesoscale convective system (MCS) using the Mid-Altitude Radial Convergence (MARC) signature. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 306311.

  • Sessa, M. F., and R. J. Trapp, 2020: Observed relationship between tornado intensity and pretornadic mesocyclone characteristics. Wea. Forecasting, 35, 12431261, https://doi.org/10.1175/WAF-D-19-0099.1.

    • Search Google Scholar
    • Export Citation
  • Sheather, S., 2009: A Modern Approach to Regression with R. Springer, 392 pp., https://doi.org/10.1007/978-0-387-09608-7.

  • Simmons, K. M., and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado casualties. Wea. Forecasting, 20, 301310, https://doi.org/10.1175/WAF857.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S. B., 2011: The impact of NWS Weather Forecast Office culture on tornado warning performance. NOAA Office of Science and Technology, Meteorological Development Laboratory, 61pp., https://www.nws.noaa.gov/mdl/seminar/Presentations/November_30_2011.pdf.

  • Straka, J. M., and J. R. Anderson, 1993: Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci., 50, 13291348, https://doi.org/10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., and A. E. Gerard, 2021: National Weather Service severe weather warnings as threats-in-motion. Wea. Forecasting, 36, 627643, https://doi.org/10.1175/WAF-D-20-0159.1.

    • Search Google Scholar
    • Export Citation
  • Togstad, W. E., S. J. Taylor, and J. Peters, 2004: An examination of severe thunderstorm discrimination skills from traditional Doppler radar parameters and Near Storm Environment (NSE) factors at large radar range. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., J2.5, https://ams.confex.com/ams/pdfpapers/81462.pdf.

  • Weber, M. E., and Coauthors, 2021: Towards the next generation operational meteorological radar. Bull. Amer. Meteor. Soc., 102, E1357E1383, https://doi.org/10.1175/BAMS-D-20-0067.1.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., T. J. Schuur, H. Vergara, and C. Kuster, 2021: Effect of precipitation sampling error on flash flood monitoring and prediction: Anticipating operational rapid-update polarimetric weather radars. J. Hydrometeor., 22, 19131929, https://doi.org/10.1175/JHM-D-19-0286.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, E. B., 1927: Probable inference, the law of succession, and statistical inference. J. Amer. Stat. Assoc., 22, 209212, https://doi.org/10.1080/01621459.1927.10502953.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Custer, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, https://doi.org/10.1175/MWR3404.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 225 225 81
Full Text Views 103 103 16
PDF Downloads 126 126 18

Impact of WSR-88D Intra-Volume Low-Level Scans on Severe Weather Warning Performance

View More View Less
  • 1 aLincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts
  • | 2 bNOAA/National Weather Service, Norton, Massachusetts
Restricted access

Abstract

The statistical relationship between supplemental adaptive intra-volume low-level scan (SAILS) usage on the Weather Surveillance Radar-1988 Doppler and National Weather Service severe storm warning performance during 2014–20 is analyzed. Results show statistically significant improvement in severe thunderstorm (SVR), flash flood (FF), and tornado (TOR) warning performance associated with SAILS-on versus SAILS-off. Within the three possible SAILS modes of one (SAILSx1), two (SAILSx2), and three (SAILSx3) additional base scans per volume, for SVR, SAILSx2 and SAILSx3 are associated with better warning performance compared to SAILSx1; for FF and TOR, SAILSx3 is associated with better warning performance relative to SAILSx1 and SAILSx2. Two severe storm cases (one that spawned a tornado, one that did not) are presented where SAILS usage helped forecasters make the correct TOR warning decision, lending real-life credence to the statistical results. Furthermore, a statistical analysis of automated volume scan evaluation and termination effects, parsed by SAILS usage and mode, yield a statistically significant association between volume scan update rate and SVR warning lead time.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Y. N. Cho, jync@ll.mit.edu

Abstract

The statistical relationship between supplemental adaptive intra-volume low-level scan (SAILS) usage on the Weather Surveillance Radar-1988 Doppler and National Weather Service severe storm warning performance during 2014–20 is analyzed. Results show statistically significant improvement in severe thunderstorm (SVR), flash flood (FF), and tornado (TOR) warning performance associated with SAILS-on versus SAILS-off. Within the three possible SAILS modes of one (SAILSx1), two (SAILSx2), and three (SAILSx3) additional base scans per volume, for SVR, SAILSx2 and SAILSx3 are associated with better warning performance compared to SAILSx1; for FF and TOR, SAILSx3 is associated with better warning performance relative to SAILSx1 and SAILSx2. Two severe storm cases (one that spawned a tornado, one that did not) are presented where SAILS usage helped forecasters make the correct TOR warning decision, lending real-life credence to the statistical results. Furthermore, a statistical analysis of automated volume scan evaluation and termination effects, parsed by SAILS usage and mode, yield a statistically significant association between volume scan update rate and SVR warning lead time.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Y. N. Cho, jync@ll.mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 275 KB)
Save