The Basic Relationship between Tropical Cyclone Intensity and the Depth of the Environmental Steering Layer in the Australian Region

Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
and
Lance M. Leslie Australian Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Lance M. Leslie in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

A simple barotropic model is employed to investigate relative impacts on tropical cyclone motion forecasts in the Australian region when wind analyses from different tropospheric levels or layers are used as the input to the model. The model is initialized with selected horizontal wind analyses from individual pressure levels, and vertical averages of several pressure levels (layer-means).

The 48-h mean forecast errors (MFE) from this model are analyzed for 300 tropical cyclone cases that cover a wide range of intensities. A significant reduction in the track forecast errors results when the depth of the vertically-averaged initial wind analysis depends upon the initial storm intensity. Mean forecast errors show that the traditionally-utilized 1000-100-hPa deep layer-mean (DLM) analysis is a good approximation of future motion only in cases of very intense tropical cyclones. Shallower, lower-tropospheric layer-means consistently outperform single-level analyses, and are best correlated with future motion in weak and moderate intensity cases.

These results suggest that barotropic track forecasting in the Australian region can be significantly improved if the depth of the vertically-averaged initial wind analysis is based upon the tropical cyclone intensity.

Abstract

A simple barotropic model is employed to investigate relative impacts on tropical cyclone motion forecasts in the Australian region when wind analyses from different tropospheric levels or layers are used as the input to the model. The model is initialized with selected horizontal wind analyses from individual pressure levels, and vertical averages of several pressure levels (layer-means).

The 48-h mean forecast errors (MFE) from this model are analyzed for 300 tropical cyclone cases that cover a wide range of intensities. A significant reduction in the track forecast errors results when the depth of the vertically-averaged initial wind analysis depends upon the initial storm intensity. Mean forecast errors show that the traditionally-utilized 1000-100-hPa deep layer-mean (DLM) analysis is a good approximation of future motion only in cases of very intense tropical cyclones. Shallower, lower-tropospheric layer-means consistently outperform single-level analyses, and are best correlated with future motion in weak and moderate intensity cases.

These results suggest that barotropic track forecasting in the Australian region can be significantly improved if the depth of the vertically-averaged initial wind analysis is based upon the tropical cyclone intensity.

Save