The Operational Recognition of Supercell Thunderstorm Environments and Storm Structures

Alan R. Moller NOAA/National Weather Service Forecast Office, Fort Worth, Texas

Search for other papers by Alan R. Moller in
Current site
Google Scholar
PubMed
Close
,
Charles A. Doswell III NOAA/Environmental Research Laboratories, National Severe Storm Laboratory, Norman, Oklahoma

Search for other papers by Charles A. Doswell III in
Current site
Google Scholar
PubMed
Close
,
Michael P. Foster NOAA/National Weather Service Forecast Office, Fort Worth, Texas

Search for other papers by Michael P. Foster in
Current site
Google Scholar
PubMed
Close
, and
Gary R. Woodall NOAA/National Weather Service Forecast Office, Lubbock, Texas

Search for other papers by Gary R. Woodall in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Supercell thunderstorm forecasting and detection is discussed, in light of the disastrous weather events that often accompany supercells. The emphasis is placed on using a scientific approach to evaluate supercell potential and to recognize their presence rather than the more empirical methodologies (e.g., “rules of thumb”) that have been used in the past. Operational forecasters in the National Weather Service (NWS) can employ conceptual models of the supercell, and of the meteorological environments that produce supercells, to make operational decisions scientifically.

The presence of a mesocyclone is common to all supercells, but operational recognition of supercells is clouded by the various radar and visual characteristics they exhibit. The notion of a supercell spectrum is introduced in an effort to guide improved operational detection of supercells. An important part of recognition is the anticipation of what potential exists for supercells in the prestorm environment. Current scientific understanding suggests that cyclonic updraft rotation originates from streamwise vorticity (in the storm's reference frame) within its environment. A discussion of how storm-relative helicity can be used to evaluate supercell potential is given. An actual supercell event is employed to illustrate the usefulness of conceptual model visualization when issuing statements and warnings for supercell storms. Finally, supercell detection strategies using the advanced datasets from the modernized and restructured NWS are described.

Abstract

Supercell thunderstorm forecasting and detection is discussed, in light of the disastrous weather events that often accompany supercells. The emphasis is placed on using a scientific approach to evaluate supercell potential and to recognize their presence rather than the more empirical methodologies (e.g., “rules of thumb”) that have been used in the past. Operational forecasters in the National Weather Service (NWS) can employ conceptual models of the supercell, and of the meteorological environments that produce supercells, to make operational decisions scientifically.

The presence of a mesocyclone is common to all supercells, but operational recognition of supercells is clouded by the various radar and visual characteristics they exhibit. The notion of a supercell spectrum is introduced in an effort to guide improved operational detection of supercells. An important part of recognition is the anticipation of what potential exists for supercells in the prestorm environment. Current scientific understanding suggests that cyclonic updraft rotation originates from streamwise vorticity (in the storm's reference frame) within its environment. A discussion of how storm-relative helicity can be used to evaluate supercell potential is given. An actual supercell event is employed to illustrate the usefulness of conceptual model visualization when issuing statements and warnings for supercell storms. Finally, supercell detection strategies using the advanced datasets from the modernized and restructured NWS are described.

Save