Constraining the Pattern and Magnitude of Projected Extreme Precipitation Change in a Multimodel Ensemble

Maximilian Kotz aPotsdam Institute for Climate Impact Research, Potsdam, Germany
bInstitute of Physics, University of Potsdam, Potsdam, Germany

Search for other papers by Maximilian Kotz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2564-5043
,
Stefan Lange aPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Stefan Lange in
Current site
Google Scholar
PubMed
Close
,
Leonie Wenz aPotsdam Institute for Climate Impact Research, Potsdam, Germany
cMercator Research Institute on Global Commons and Climate Change, Berlin, Germany

Search for other papers by Leonie Wenz in
Current site
Google Scholar
PubMed
Close
, and
Anders Levermann aPotsdam Institute for Climate Impact Research, Potsdam, Germany
bInstitute of Physics, University of Potsdam, Potsdam, Germany
dLamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Anders Levermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projections of precipitation extremes over land are crucial for socioeconomic risk assessments, yet model discrepancies limit their application. Here we use a pattern-filtering technique to identify low-frequency changes in individual members of a multimodel ensemble to assess discrepancies across models in the projected pattern and magnitude of change. Specifically, we apply low-frequency component analysis (LFCA) to the intensity and frequency of daily precipitation extremes over land in 21 CMIP-6 models. LFCA brings modest but statistically significant improvements in the agreement between models in the spatial pattern of projected change, particularly in scenarios with weak greenhouse forcing. Moreover, we show that LFCA facilitates a robust identification of the rates at which increasing precipitation extremes scale with global temperature change within individual ensemble members. While these rates approximately match expectations from the Clausius-Clapeyron relation on average across models, individual models exhibit considerable and significant differences. Monte Carlo simulations indicate that these differences contribute to uncertainty in the magnitude of projected change at least as much as differences in the climate sensitivity. Last, we compare these scaling rates with those identified from observational products, demonstrating that virtually all climate models significantly underestimate the rates at which increases in precipitation extremes have scaled with global temperatures historically. Constraining projections with observations therefore amplifies the projected intensification of precipitation extremes as well as reducing the relative error of their distribution.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maximilian Kotz, maxkotz@pik-potsdam.de

Abstract

Projections of precipitation extremes over land are crucial for socioeconomic risk assessments, yet model discrepancies limit their application. Here we use a pattern-filtering technique to identify low-frequency changes in individual members of a multimodel ensemble to assess discrepancies across models in the projected pattern and magnitude of change. Specifically, we apply low-frequency component analysis (LFCA) to the intensity and frequency of daily precipitation extremes over land in 21 CMIP-6 models. LFCA brings modest but statistically significant improvements in the agreement between models in the spatial pattern of projected change, particularly in scenarios with weak greenhouse forcing. Moreover, we show that LFCA facilitates a robust identification of the rates at which increasing precipitation extremes scale with global temperature change within individual ensemble members. While these rates approximately match expectations from the Clausius-Clapeyron relation on average across models, individual models exhibit considerable and significant differences. Monte Carlo simulations indicate that these differences contribute to uncertainty in the magnitude of projected change at least as much as differences in the climate sensitivity. Last, we compare these scaling rates with those identified from observational products, demonstrating that virtually all climate models significantly underestimate the rates at which increases in precipitation extremes have scaled with global temperatures historically. Constraining projections with observations therefore amplifies the projected intensification of precipitation extremes as well as reducing the relative error of their distribution.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maximilian Kotz, maxkotz@pik-potsdam.de

Supplementary Materials

    • Supplemental Materials (PDF 3.9253 MB)
Save
  • Aalbers, E. E., G. Lenderink, E. van Meijgaard, and B. J. J. M. van den Hurk, 2018: Local-scale changes in mean and heavy precipitation in western Europe, climate change or internal variability? Climate Dyn., 50, 47454766, https://doi.org/10.1007/s00382-017-3901-9.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Blanusa, M. L., C. J. López-Zurita, and S. Rasp, 2023: Internal variability plays a dominant role in global climate projections of temperature and precipitation extremes. Climate Dyn., 61, 19311945, https://doi.org/10.1007/s00382-023-06664-3.

    • Search Google Scholar
    • Export Citation
  • Boulange, J., N. Hanasaki, D. Yamazaki, and Y. Pokhrel, 2021: Role of dams in reducing global flood exposure under climate change. Nat. Commun., 12, 417, https://doi.org/10.1038/s41467-020-20704-0.

    • Search Google Scholar
    • Export Citation
  • Carmichael, M. J., R. D. Pancost, and D. J. Lunt, 2018: Changes in the occurrence of extreme precipitation events at the Paleocene–Eocene thermal maximum. Earth Planet. Sci. Lett., 501, 2436, https://doi.org/10.1016/j.epsl.2018.08.005.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 24362444, https://doi.org/10.1002/2016GL072439.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, X. Chen, W. Zhang, L. Zhang, M. Wu, and L. Zou, 2022: Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun., 13, 2552, https://doi.org/10.1038/s41467-022-30106-z.

    • Search Google Scholar
    • Export Citation
  • Davenport, F. V., M. Burke, and N. S. Diffenbaugh, 2021: Contribution of historical precipitation change to US flood damages. Proc. Natl. Acad. Sci. USA, 118, e2017524118, https://doi.org/10.1073/pnas.2017524118.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Sedláček, E. Hawkins, and R. Knutti, 2014: Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett., 41, 85548562, https://doi.org/10.1002/2014GL062018.

    • Search Google Scholar
    • Export Citation
  • Frame, D. J., S. M. Rosier, I. Noy, L. J. Harrington, T. Carey-Smith, S. N. Sparrow, D. A. Stone, and S. M. Dean, 2020: Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Climatic Change, 162, 781797, https://doi.org/10.1007/s10584-020-02729-y.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hsiang, S. M., M. Burke, and E. Miguel, 2013: Quantifying the influence of climate on human conflict. Science, 341, 1235367, https://doi.org/10.1126/science.1235367.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte, et al., Eds., Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.

  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • King, A. D., and Coauthors, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, https://doi.org/10.1088/1748-9326/10/9/094015.

    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Kotz, M., L. Wenz, and A. Levermann, 2021: Footprint of greenhouse forcing in daily temperature variability. Proc. Natl. Acad. Sci. USA, 118, e2103294118, https://doi.org/10.1073/pnas.2103294118.

    • Search Google Scholar
    • Export Citation
  • Kotz, M., A. Levermann, and L. Wenz, 2022: The effect of rainfall changes on economic production. Nature, 601, 223227, https://doi.org/10.1038/s41586-021-04283-8.

    • Search Google Scholar
    • Export Citation
  • Lange, S., and Coauthors, 2020: Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth’s Future, 8, e2020EF001616, https://doi.org/10.1029/2020EF001616.

    • Search Google Scholar
    • Export Citation
  • Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner, 2021: Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Climate, 34, 34413460, https://doi.org/10.1175/JCLI-D-19-1013.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2017: Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA, 114, E2285E2292, https://doi.org/10.1073/pnas.1615922114.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, https://doi.org/10.1029/2009GL040218.

    • Search Google Scholar
    • Export Citation
  • Madakumbura, G. D., C. W. Thackeray, and J. J. Norris, 2021: Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun., 12, 3944, https://doi.org/10.1038/s41467-021-24262-x.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, https://doi.org/10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., K. E. Taylor, T. M. Wigley, J. E. Penner, P. D. Jones, and U. Cubasch, 1995: Towards the detection and attribution of an anthropogenic effect on climate. Climate Dyn., 12, 77100, https://doi.org/10.1007/BF00223722.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15 24815 253, https://doi.org/10.1073/pnas.0702872104.

    • Search Google Scholar
    • Export Citation
  • Schewe, J., and A. Levermann, 2022: Sahel rainfall projections constrained by past sensitivity to global warming. Geophys. Res. Lett., 49, e2022GL098286, https://doi.org/10.1029/2022GL098286.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2013: Using paleo-climate comparisons to constrain future projections in CMIP5. Climate Past Discuss., 9, 775835, https://doi.org/10.5194/cpd-9-775-2013.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., T. Fuchs, A. Meyer-Christoffer, and B. Rudolf, 2008: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD Internet Publikation Rep. 112, 17 pp., https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_lastversion.pdf.

  • Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Oxford Research Encyclopedia of Natural Hazard Science, https://doi.org/10.1093/acrefore/9780199389407.013.132.

  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and Coauthors, 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., M. Watanabe, H. Kim, and N. Hirota, 2022: Emergent constraints on future precipitation changes. Nature, 602, 612616, https://doi.org/10.1038/s41586-021-04310-8.

    • Search Google Scholar
    • Export Citation
  • Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, https://doi.org/10.1029/2012GL052762.

    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., A. Hall, J. Norris, and D. Chen, 2022: Constraining the increased frequency of global precipitation extremes under warming. Nat. Climate Change, 12, 441448, https://doi.org/10.1038/s41558-022-01329-1.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., and Coauthors, 2021: Intergenerational inequities in exposure to climate extremes. Science, 374, 158160, https://doi.org/10.1126/science.abi7339.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. F., and J. S. Famiglietti, 2019: Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep., 9, 4124, https://doi.org/10.1038/s41598-019-40155-y.

    • Search Google Scholar
    • Export Citation
  • von Uexkull, N., M. Croicu, H. Fjelde, and H. Buhaug, 2016: Civil conflict sensitivity to growing-season drought. Proc. Natl. Acad. Sci. USA, 113, 12 39112 396, https://doi.org/10.1073/pnas.1607542113.

    • Search Google Scholar
    • Export Citation
  • Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe, 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. USA, 111, 32283232, https://doi.org/10.1073/pnas.1312330110.

    • Search Google Scholar
    • Export Citation
  • Willner, S. N., A. Levermann, F. Zhao, and K. Frieler, 2018: Adaptation required to preserve future high-end river flood risk at present levels. Sci. Adv., 4, eaao1914, https://doi.org/10.1126/sciadv.aao1914.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C., T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, 2018: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett., 45, 24872496, https://doi.org/10.1002/2017GL076327.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C., D. S. Battisti, K. C. Armour, T. Schneider, and C. Deser, 2020: Pattern recognition methods to separate forced responses from internal variability in climate model ensembles and observations. J. Climate, 33, 86938719, https://doi.org/10.1175/JCLI-D-19-0855.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and R. Ludwig, 2020: Analyzing internal variability and forced response of sub-daily and daily extreme precipitation over Europe. Geophys. Res. Lett., 47, e2020GL089300, https://doi.org/10.1029/2020GL089300.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., and B. J. Soden, 2019: Constraining climate model projections of regional precipitation change. Geophys. Res. Lett., 46, 10 52210 531, https://doi.org/10.1029/2019GL083926.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., K. Furtado, T. Zhou, P. Wu, and X. Chen, 2022: Constraining extreme precipitation projections using past precipitation variability. Nat. Commun., 13, 6319, https://doi.org/10.1038/s41467-022-34006-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 52525257, https://doi.org/10.1002/grl.51010.

    • Search Google Scholar
    • Export Citation
  • Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. Lettenmaier, 2003: Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. J. Climate, 16, 535547, https://doi.org/10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6479 6479 405
Full Text Views 844 844 50
PDF Downloads 1037 1037 56