Automated activity estimation of the cold-water coral *Lophelia pertusa*

by multispectral imaging and computational pixel classification

Hongbo Liu1,2,*, Janina V. Büscher2, Kevin Köser2, Jens Greinert2,3,

Hong Song1, Ying Chen1,4, and Timm Schoening2

1Ocean College, Zhejiang University, Zhoushan, 316021, China.

2GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany.

3Christian-Albrechts University Kiel, Institute of Geosciences, Ludewig-Meyn-Str. 10-12, 24098 Kiel, Germany.

4State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.

*Corresponding author address: Hongbo Liu, Ocean College, Zhejiang University, Zhoushan, 316021, China.

E-mail: hbliu104@zju.edu.cn

Early Online Release: This preliminary version has been accepted for publication in *Journal of Atmospheric and Oceanic Technology*, may be fully cited, and has been assigned DOI 10.1175/JTECH-D-19-0139.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.
ABSTRACT
The cold-water coral *Lophelia pertusa* builds up bioherms that sustain high biodiversity in the deep ocean worldwide. Photographic monitoring of the polyp activity represents a helpful tool to characterize the health status of the corals and to assess anthropogenic impacts on the microhabitat. Discriminating active polyps from skeletons of white *Lophelia pertusa* is usually time-consuming and error-prone due to their similarity in color in common RGB camera footage. Acquisition of finer resolved spectral information might increase the contrast between the segments of polyps and skeletons, and therefore could support automated classification and accurate activity estimation of polyps. For recording the needed footage, underwater multispectral imaging systems can be used, but they are often expensive and bulky. Here we present results of a new, light-weight, compact and low-cost deep-sea tunable LED-based underwater multispectral imaging system (TuLUMIS) with eight spectral channels. A brunch of healthy white *Lophelia pertusa* was observed under controlled conditions in a laboratory tank. Spectral reflectance signatures were extracted from pixels of polyps and skeletons of the observed coral. Results showed that the polyps can be better distinguished from the skeleton by analysis of the eight-dimensional spectral reflectance signatures compared to three-channel RGB data. During a 72-hour monitoring of the coral with a half-hour temporal resolution in the lab, the polyp activity was estimated based on the results of the multispectral pixel classification using a support vector machine (SVM) approach. The computational estimated polyp activity was consistent with that of the manual annotation, which yielded a correlation coefficient of 0.957.
1. Introduction

The cold-water coral *Lophelia pertusa* is a widespread reef-building scleractinian coral species (Roberts et al. 2006, 2009). It is azooxanthellate (lacking symbiotic dinoflagellates) and feeds on food particles that rain through the water column from surface water or are transported laterally (Roberts and Anderson 2002; Roberts et al. 2006, 2009).

Lophelia pertusa reef systems are considered as biodiversity hotspots in deep water (Fosså et al. 2002; Freiwald et al. 2004) as shown in Fig. 1(a). They process organic matter and recycle inorganic matter at the seafloor (van Oevelen et al. 2009; Baussant et al. 2018), and their complex aragonite structures provide hard substrate for a variety of benthic fauna (Fosså et al. 2002; Brooke and Young 2009). For instance, the coral reef microhabitats support higher shrimp abundance than the surrounding coral rubble or non-biogenic sediment microhabitats (Purser et al. 2013; Osterloff et al. 2016c). In addition, they are important paleoenvironmental archives owing to their longevity over geological time scales, cosmopolitan distributions, and banded skeletal structure (Roberts et al. 2006, 2009).

Today, *Lophelia pertusa* bioherms suffer from anthropogenic threats. Direct impacts of human activities include physical damage by bottom trawling, exposure to sediment resuspension (caused by trawls or anchors), and discharge of sediments and minerals from hydrocarbon drilling and seabed mining (Freiwald et al. 2004; Buhl-Mortensen et al. 2015). Ocean acidification caused by anthropogenic carbon dioxide emissions also effects scleractinian corals, whose calcification rate decreases with declining seawater pH and carbonate ion concentrations, which results in slower growth followed by potential coral death (Roberts et al. 2006, 2009; Albright et al. 2016; Büscher et al. 2017).
Polyp activity of *Lophelia pertusa* is a good indicator of the coral health and thus a robust indicator of the environmental stress acting on the coral (Roberts and Anderson 2002; Buhl-Mortensen et al. 2015). Generally, polyps of *Lophelia pertusa* have no clear diurnal pattern (Mortensen 2001; Roberts and Anderson 2002; Baussant et al. 2018). They behave asynchronously on the same colony, and have a great variability across reefs (Purser 2015). *Lophelia pertusa* preys through expansions and retractions of the polyps, therefore current velocity clearly impacts food capture efficiency (Roberts and Anderson 2002; Orejas et al. 2016). Under increased particle exposure, polyps can clean their surface effectively using a combination of mucus production, ciliary movement, and tentacular activity (Larsson and Purser 2011; Erftemeijer et al. 2012; Larsson et al. 2013; Buhl-Mortensen et al. 2015; Zetsche et al. 2016). Interactive effects of multiple climate change stressors comprising CO$_2$ concentration, temperature, and nutritional status on different physiological processes of *Lophelia pertusa* have been investigated in a multifactorial long-term experiment (Büscher et al. 2017). Monitoring of *Lophelia pertusa* helps distinguishing the natural behavior from stressed or disturbed behavior of the polyps (Larsson et al. 2013; Buhl-Mortensen et al. 2015), thus assessing the health status of the coral and the anthropogenic impacts on these important and nice microhabitats.

Photographic mapping is prevalent for quantitative assessment of the distribution and living condition of coral habitats. It benefits from high spatial resolution and exclusive color information compared to acoustic mapping. And it is non-invasive compared to assessments of the coral status (e.g. living biomass and respiration rates) through direct sampling (Purser 2015). Images are usually taken from a manned submersible (Greinert and Schoening 2019; Form et al. 2015) or from a remotely operated vehicle (ROV) (Purser et al. 2009, 2013; Purser 2015; Buhl-Mortensen et al. 2015) which is movable and thus flexible for mapping. Studies can also be done with a fixed camera system on the seafloor which is capable of locally monitoring over a longer time.
enabling the detection of long-term variations (Barnes et al. 2013; Godø et al. 2014; Form et al. 2014). In this regard, cabled ocean observatories equipped with imaging devices are advantageous in continuously monitoring changes of visual features such as size, context and color of coral structures (Osterloff et al. 2016a,b). The temporal scales range from days (Buhl-Mortensen et al. 2015) to months (Osterloff et al. 2016b, 2019), with an hourly or half-hourly temporal resolution. The spatial focus ranges from the level of colonies (Osterloff et al. 2016b) down to individual polyps (Osterloff et al. 2016a).

Analysis of the coral images by human experts is feasible but is often time-consuming and error-prone (Osterloff et al. 2016a,b; Schoening et al. 2016) in respect of accuracy and reproducibility. Typically, the polyp expansion state is manually annotated in different levels from fully expanded to retracted (Purser 2015; Buhl-Mortensen et al. 2015; Osterloff et al. 2016a), and the number of living or dead polyps is counted to calculate mortality (Brooke and Young 2009; Büscher et al. 2017). Apart from the limited visibility in water, visually distinguishing polyps is generally challenging. The semi-transparent tentacles are fuzzy and often overlapping (Osterloff et al. 2016a). Expansion states of tentacles can be blurred by currents, and the size of polyps may be misinterpreted as the expansion state (Buhl-Mortensen et al. 2015). Moreover, human observers tend to overlook active polyps when many active ones occur in one image, therefore underestimate the activity (Osterloff et al. 2016a). An objective method is to take the silhouettes of a coral colony with and without extended polyps, respectively. The polyp activity is subsequently estimated from the difference of the pixel area between the two silhouettes (Roberts and Anderson 2002; Orejas et al. 2016; Baussant et al. 2018). However, given the featureless interior of a silhouette, this method requests for coral colonies selected and disposed with clearly observable polyps extending outwards against a dark background. Recently, machine learning aided image processing and analysis has been effectively used in recognition and classification of living corals (Purser et al. 2016).
2009; Osterloff et al. 2016a; Rimavicius and Gelzinis 2017; Nilssen et al. 2017). Osterloff et al. (2019) successfully linked the polyp activity determined by machine learning to other sensor time series (current, water depth, temperature) to find relationships. The potential of deep learning methods to utilize the enormous number of images taken by conventional RGB cameras has also been investigated (King et al. 2018).

Underwater hyperspectral imaging (UHI) and multispectral (MS) imaging methods benefit from both spatial and spectral information, thus they are promising for efficient seafloor habitat classification (Johnsen et al. 2013; Tegdan et al. 2015; Johnsen et al. 2016; Bongiorno et al. 2018), inorganic material classification at wreck sites for marine archaeology (Ødegård et al. 2018), and benthic mapping of sulphide mineral deposits (Sture et al. 2017) and manganese nodules (Dumke et al. 2018a). UHI and MS imaging have also been effectively used in taxonomic studies of biological species such as spoon worms, sponges (Pettersen et al. 2014), coralline algae (Mogstad and Johnsen 2017) and megafauna (Dumke et al. 2018b), where different pigment compositions feature varying spectral absorption and reflection. However, underwater spectral imaging equipments haven’t been widely used because they are often expensive and bulky.

As to *Lophelia pertusa*, metabolic carotenoids bounding to specific proteins and to calcium carbonate contribute to spectral absorbance signatures of different coral segments (i.e., polyps and skeletons), where carotenoid-proteins are only present in living polyps (Elde et al. 2012). Therefore, underwater hyperspectral imaging is used in the lab to determine polyp mortality and health conditions varying from unaffected to dead when exposed to a toxic compound (Letnes et al. 2018). Moreover, a periodic color change of *Lophelia pertusa* (i.e., living corals become more reddish from April to August, and recover until November) has been observed during a long-term in situ monitoring by using an RGB camera over seven months (Osterloff et al. 2016b, 2019).
In this study, we took advantage of the recently introduced tunable LED-based underwater multispectral imaging system (TuLUMIS) (Liu et al. 2018) to provide an approach for automated estimation of polyp activity. TuLUMIS synchronizes a monochrome camera with flashing, pressure neutral color LEDs to provide eight-channel spectral images (while RGB cameras provide images with only three channels, i.e., red, green and blue). It features a durable and simpler structure to reduce the bulk and cost compared to existing underwater multispectral imaging equipments. Different segments of *Lophelia pertusa* (i.e. polyps and skeletons) appear similar in color in common RGB camera footage as shown in Fig. 1(b). Finer resolved spectral reflectance at each pixel contains more information of the spectral signature, which might increase the contrast between coral polyps and skeletons and hence it might help an automated recognition of the polyps. We quantitatively compared the eight-channel MS imaging with RGB imaging on the ability of pixel-level classification of polyps versus skeletons using a similarity assessment criterion and a supervised classification (Support Vector Machines, SVMs). The polyp activity estimation based on the computational pixel classification was validated through a 72-hour monitoring of *Lophelia pertusa* in the lab.

The main contribution of this study lies in the effective application of TuLUMIS in polyp recognition and activity monitoring of the cold-water coral *Lophelia pertusa* in the lab condition. It supports and facilitates the attempt of using a multispectral imaging system such as TuLUMIS for an in situ activity monitoring of *Lophelia pertusa* in the future.

This paper briefly describes the principles of underwater multispectral imaging, the spectral similarity assessment, the classifier for coral segments, and the polyp activity estimation algorithm in Section 2. Composition and specification of TuLUMIS and the experimental settings are presented in Section 3, followed by the presentation of results in Section 4. Spectral characteristics of *Lophelia pertusa* acquired during the monitoring are analyzed in Section 5 followed by a discussion of
potential improvements to make the most of the MS data and an attempt of a simplified annotation alternative. Finally, conclusions are drawn in Section 6.

2. Principles and methods

a. Acquisition of spectral signatures

In underwater MS imaging, a significant portion of multispectral light is absorbed by water in dependence of the wavelength. Light attenuation is also affected by variable composition and concentration of constituents (e.g., pigments in phytoplankton, suspended particles, colored dissolved organic matter, and bubbles) in natural waters (Mobley et al. 2018).

In order to acquire the inherent spectral reflectance at the surface of the target for further analysis, it is necessary to eliminate the effects of inhomogeneous spectral illumination and attenuation in water. A white board featuring equal spectral reflectance through all visible light bands is usually used as a reference to correct the spectral distortion. As a result, each spatial pixel x relates to a spectral vector $x = [x_1, x_2, \ldots, x_n]^T$ with n relative reflectance calibrated by the white board from different channels. The spectral vector $x \in \mathbb{R}^n$ describes the spectral signature of that pixel.

b. Spectral angle mapping and similarity assessment

For a specific spectral imagery acquisition method, the similarity between spectral signatures can be effectively measured by a spectral angle mapper (SAM) calculation (Zawada and Mazel 2014). SAM describes the angle θ between two spectral vectors in an n-dimensional space as

$$\Gamma(x, y) = \theta = \arccos\frac{x \cdot y}{\|x\|\|y\|}, \quad x, y \in \mathbb{R}^n,$$

(1)
where \(\mathbf{x} = [x_1, x_2, \ldots, x_n]^T \) and \(\mathbf{y} = [y_1, y_2, \ldots, y_n]^T \) are spectral signatures (\(\mathbb{R}^{n \times 1} \) vectors) extracted from the two pixels \(x \) and \(y \). A smaller \(\Gamma(\mathbf{x}, \mathbf{y}) \) indicates a higher similarity between \(x \) and \(y \), and it attains a value of 0 for equal spectral signatures.

In this study, two spectral imagery acquisition methods (i.e. with TuLUMIS and an RGB camera) were used to collect spectral vectors of two different classes of objects (i.e. polyps and skeletons of \(Lophelia pertusa \)). The spectral vectors collected with TuLUMIS were represented by \(\mathbf{p}^{\text{MS}} \) and \(\mathbf{s}^{\text{MS}} \in \mathbb{R}^8 \) for polyp and skeleton pixels, respectively. The spectral vectors collected with an RGB camera were represented by \(\mathbf{p}^{\text{RGB}} \) and \(\mathbf{s}^{\text{RGB}} \in \mathbb{R}^3 \) for polyp and skeleton pixels, respectively. Apart from different dimensionalities, the acquisitions of deterministic spectrum of an object by different methods are often subject to spectral variabilities (i.e. inhomogeneous surface composition, media condition and sensor noise, etc) in practice (Manolakis et al. 2003). As a result, SAM measures across acquisition methods such as \(\Gamma(\mathbf{p}^{\text{MS}}, \mathbf{s}^{\text{MS}}) \) and \(\Gamma(\mathbf{p}^{\text{RGB}}, \mathbf{s}^{\text{RGB}}) \) were not directly comparable. Besides, within-class deviations were brought in spectral signatures of different pixels of the same object.

In order to compare the ability of polyp-skeleton discrimination between different imaging modalities, a normalized dissimilarity assessment criterion derived from SAM measures was used. Suppose there were \(m_p \) pixels of polyps and \(m_s \) pixels of skeletons collected by each method, and the mark of methods (RGB or MS) was omitted in the following derivation for the sake of brevity.

For a certain imaging modality, spectral signatures extracted from polyp and skeleton pixels were represented as \(\mathbf{p}_i \ (i = 1, \ldots, m_p) \) and \(\mathbf{s}_i \ (i = 1, \ldots, m_s) \). The within-class similarities of the \(m_p \) polyp pixels and the \(m_s \) skeleton pixels were estimated as

\[
\mu^{(\Gamma)} = \frac{\sum_{i=1}^{m_p} \sum_{j=1}^{m_p} \Gamma(\mathbf{p}_i, \mathbf{p}_j) + \sum_{i=1}^{m_s} \sum_{j=1}^{m_s} \Gamma(\mathbf{s}_i, \mathbf{s}_j)}{m_p(m_p - 1) + m_s(m_s - 1)}
\]
And the spectral similarity measured by SAM between each pair of polyp and skeleton pixels was modified as

$$\Delta_{ij}^{(\Gamma)} = \Gamma(p_i, s_j) - \mu^{(\Gamma)}$$ \hspace{1cm} (3)$$

where $\Delta_{ij}^{(\Gamma)}$ represents the modified between-class similarity of p_i and s_j with $i = 1, 2, \ldots, m_p$ and $j = 1, 2, \ldots, m_s$. The normalized spectral similarity between the polyp class and the skeleton class was then calculated by

$$\delta^{(\Gamma)} = \frac{\sum_{i=1}^{m_p} \sum_{j=1}^{m_s} \Delta_{ij}^{(\Gamma)}}{m_p \cdot m_s}$$ \hspace{1cm} (4)$$

which is the average of the modified between-class spectral similarities across the selected m_p polyp pixels and the m_s skeleton pixels. A larger $\delta^{(\Gamma)}$ indicates a larger divergence estimated by the corresponding imaging modality. It allows a quantitative comparison of the MS method using TuLUMIS to the conventional RGB method for their ability to discriminate the polyp pixels from the skeleton pixels by comparing $\delta^{(MS, \Gamma)}$ and $\delta^{(RGB, \Gamma)}$.

c. SVM classifier and metrics

Compared to the RGB method which has only three spectral channels, the MS method provides eight spectral channels over the same visible spectrum from 400 nm to 700 nm. In order to evaluate the benefits of the finer resolved spectral information to the classification of polyps and skeletons, support vector machine (SVM) (Schölkopf et al. 1997) classifiers were trained and deployed on individual pixel-wise spectral features without including shape and texture information.

The performance of each classifier was evaluated by a confusion matrix of which the columns and rows represent the instances in a predicted class and an actual class, respectively. Manually annotated labels (i.e. polyp, skeleton, or background) were treated as actual classes to check if the SVM classifier predicted correctly.
For a binary (positive / negative) classification, its two-by-two confusion matrix consists of the number of true positive (TP) for correctly classified positive cases, false positive (FP) for incorrectly classified positive cases, true negative (TN) for correctly classified negative cases, and false negative (FN) for incorrectly classified negative cases. Sensitivity and specificity are common metrics of the classification accuracy, which are defined as the correctly classified proportion of the positive and negative cases, respectively, as follows:

\[
\text{Sensitivity} = \frac{TP}{TP + FN},
\]

(5)

\[
\text{Specificity} = \frac{TN}{TN + FP}.
\]

(6)

For a skewed data set with a disparity in the number of instances between classes, a geometric mean (G-mean) of the sensitivity and the specificity is used to evaluate the classification accuracy on both the positive and negative classes in a balanced way (Akosa 2017):

\[
\text{G-mean}_2 = \sqrt{\text{Sensitivity} \cdot \text{Specificity}}
\]

\[
= \sqrt{\frac{TP}{TP + FN} \cdot \frac{TN}{TN + FP}}
\]

(7)

For our ternary classification of polyps, skeletons, and the background, a three-by-three matrix was constructed where the number of correctly classified instances lay on the main diagonal. The three-class G-mean was calculated by the geometric mean of sensitivities of the three classes:

\[
\text{G-mean}_3 = \sqrt[3]{\frac{TP_p}{TP_p + FN_p} \cdot \frac{TP_s}{TP_s + FN_s} \cdot \frac{TP_b}{TP_b + FN_b}}
\]

(8)

where \(TP_{p,s,b}\) and \(FN_{p,s,b}\) are referred to the three binary tests, namely polyp/non-polyp, skeleton/non-skeleton, and background/non-background. Individual G-mean\(_2\) for each of the three binary tests was also calculated to evaluate the classification of a specific class.
d. Polyp activity estimation

Polyp activity was estimated by the proportion η_p of pixels classified as polyp in each of the m images:

$$\eta_p^i = \frac{N_p^i}{w \cdot h} \quad i = 1, 2, \ldots, m$$ \hspace{1cm} (9)

where N_p^i represents the number of pixels classified as polyp in image i and w and h denote the width and height of the image in pixels. In order to emphasize the temporal dynamics, a sequence of estimated activities $[\eta_p^1, \eta_p^2, \cdots \eta_p^m]$ were standardized by subtracting their mean and divided by their standard deviation:

$$\hat{\eta}_p^i = \frac{\eta_p^i - \bar{\eta}_p}{\sigma(\eta_p)} \quad i = 1, 2, \ldots, m$$ \hspace{1cm} (10)

where

$$\bar{\eta}_p = \frac{1}{m} \sum_{i=1}^{m} \eta_p^i$$ \hspace{1cm} (11)

$$\sigma(\eta_p) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (\eta_p^i - \bar{\eta}_p)^2}$$ \hspace{1cm} (12)

3. Experiment

a. Specimen of Lophelia pertusa

A healthy branch of white *Lophelia pertusa* with 20 polyps shown in Fig. 2 was selected from specimens cultivated in a climate room as the object of the monitoring.

The lab cultured colonies were carefully collected during a cruise in August 2014 from the Nord-Leksa reef in the outer Trondheim-Fjord (location approx. 63°36.5′ N, 09°22.9′ E).

b. Experimental setup

For the MS method, TuLUMIS was used in the coral monitoring experiment as shown in Fig. 3(a). Spectral images were collected by a 12-bit industrial monochrome camera (acA2040-
25 gmNIR, Basler, Germany) with an Apo-Xenoplan 2.0/24 lens (Schneider, Germany) illuminated by eight pairs of custom color LEDs (LUXEON Z, Lumileds, Netherlands). A mini computer (NUC6i5SYB, Intel, USA) and a micro controller (Arduino MKR Zero, Italy) synchronized the lighting and image acquisition. A set of watertight cables (SubConn Micro Circular, MacArtney, Denmark) were used for power and signal transmission.

The layout of the experiment is shown in Fig. 3(b). A lampshade as shown in Fig. 3(c) was used to hold the LEDs and the camera. The eight pairs of LEDs were evenly distributed in a circle on the conical wall of the lampshade. The oppositely fixed LED pairs provided a homogeneous illumination of the coral to alleviate shadows. The monochrome camera was mounted in the middle of the lampshade. The lampshade was hung approximately 30 cm above the coral sample and was submerged in the water tank.

The computer synchronized the exposure of the camera and the flash of a pair of LEDs to take an image at a specific spectral band. A white board was used as a reference to balance the LED power for each band by tuning the pulse-width of their driving voltage, as well as to adjust the exposure time of the camera, in order to compensate the spectral distortion between images of different wavebands.

For comparison, a common RGB imaging system was used to image the same coral sample at the same condition. Given its generality and feasibility, the camera of a cellphone (F5121, SONY, Japan) was used as the RGB sensor, and the coral was illuminated by a 700 lm white LED torch (XM-L2, CREE, USA).

c. Monitoring settings

The monitoring was conducted in a totally dark climate room where the corals were cultured. The selected *Lophelia pertusa* branch fixed on a substrate was settled in a 40 cm × 40 cm × 40 cm
water tank filled with natural North Sea water circulated by a streaming pump with the flow rate of 900 l/h (Koralia Nano, Hydor, Italy). The coral was fed 24 hours before the monitoring with freshly hatched Artemia franciscana nauplii (Premium, Sanders) and calanoid copepods (Goldpods liquid zooplankton concentrate, Nyos, Germany). The temperature and salinity were kept constant at 7.5 °C and 35 psu, respectively.

The monitoring lasted for 72 hours. An automated imaging procedure was programmed to carry out an acquisition every half hour. For each acquisition, eight images at different wavebands were taken sequentially within one second before the polyps moved significantly. As a prerequisite, the flash of LEDs in complete darkness is not a significant stimulator of polyp expansion or behavior (Mortensen 2001).

4. Results

a. Description of data sets

In order to evaluate the spectral discrimination ability of the MS method with respect to the RGB method, an eight-channel spectral image and a three-channel RGB image of the same branch of *Lophelia pertusa* were selected to make up a comparative group.

As shown in Fig. 4, the two images were cropped to the same size of 1200×1200 pixels. The MS image shown here is a synthetic fusion of the set of gray-value multispectral images for the purpose of visualization, while reflectance spectra of the MS image is analyzed in Section 5.a in detail. As to the fusion process, spectral response curves of the RGB image sensor provided by the manufacturer were used to convert an eight-channel spectral image to a color image. At each pixel, eight intensities weighted by the spectral response at their corresponding central wavelength were
added together, and the aggregated RGB intensities were normalized by dividing a white point
which has the largest intensity over the RGB channels in the image.

The RGB image and the MS-fused image were manually annotated in three classes: polyps,
skeletons, and the background. As shown in Fig. 4, the author Hongbo Liu drew three masks in
the GNU Image Manipulation Program (GIMP) with a graphic tablet (CTL-490DW-S, Wacom,
USA) to set up a gold standard of the pixel-wise three-class annotation after the acquisition. A
year later, the same person annotated the two images again to check the consistency of the gold
standard. Since the images were collected in close proximity to a single branch of *Lophelia pertusa*
in the lab condition with sufficient illumination, the intra-observer agreement reached over 99%
with differences only appeared at the edges of the polyps.

The annotated RGB image and MS-fused image in the comparative group made up two data sets
RGB$_{cmp}$ and MS$_{cmp}$ containing 1,440,000 instance-label pairs corresponding to one full image
with three and eight features, respectively. In order to train and test SVM classifiers, The data sets
RGB$_{cmp}$ and MS$_{cmp}$ were further divided into training-validation data sets (RGB$_{t-v}$, MS$_{t-v}$) and test
data sets (RGB$_{test}$, MS$_{test}$). The training-validation data sets RGB$_{t-v}$ and MS$_{t-v}$ were established
by randomly selecting 28,800 pixels (accounting for 2% of the entire 1200×1200 pixels) from
data sets RGB$_{cmp}$ and MS$_{cmp}$ with the proportion of the three classes remained. As a result,
data set RGB$_{t-v}$ consisted of 1252 (4.3%) pixels of polyps, 3554 (12.3%) pixels of skeletons,
and 23,994 (83.3%) pixels of the background; data set MS$_{t-v}$ consisted of 2388 (8.3%) pixels of
polyps, 3763 (13.1%) pixels of skeletons, and 22,649 (78.6%) pixels of the background. The rest
98% instance-label pairs in data sets RGB$_{cmp}$ and MS$_{cmp}$ made up the test data sets RGB$_{test}$ and
MS$_{test}$, respectively.

During the 72-hour monitoring with an acquisition period of 0.5 hour, 144 eight-channel spectral
images were acquired. In order to validate the activity estimation of the coral, 36 spectral images
were selected from the monitoring sequence with an equal interval of two hours to make up a verification group MS_{act}. For the 36 images in MS_{act}, only polyp pixels were annotated to derive a gold standard of the activity of the observed branch of *Lophelia pertusa*.

b. Spectral angle mapping and similarity assessment

To generally assess the improved capability of MS imaging over RGB in distinguishing polyp pixels from skeleton pixels, the criterion described in Eq. (4) was used. From the perspective of computational intensity, a random selection of 1000 pixels of polyps and 1000 pixels of skeletons from each data set of RGB_{cmp} and MS_{cmp} were used to calculate $\Delta^{(\text{RGB}, \Gamma)}$ and $\Delta^{(\text{MS}, \Gamma)}$ with $m_p = m_s = 1000$. From the perspective of generality, the random selection was repeated for 10,000 times to cover the RGB_{cmp} and MS_{cmp} in order to check the stability of the results of the similarity assessment of $\delta^{(\text{RGB}, \Gamma)}$ and $\delta^{(\text{MS}, \Gamma)}$.

Histograms of $\delta^{(\text{MS}, \Gamma)}$ and $\delta^{(\text{RGB}, \Gamma)}$ of the 10,000 random selections were plotted together in Fig. 5. The distributions of $\delta^{(\text{MS}, \Gamma)}$ and $\delta^{(\text{RGB}, \Gamma)}$ are approximately normal with means of 1.78 and 1.15, and standard deviations of 0.124 and 0.102, respectively. Statistically, $\delta^{(\text{MS}, \Gamma)}$ lies in the range of 1.78 ± 0.24 (or between 1.54 and 2.02) while $\delta^{(\text{RGB}, \Gamma)}$ lies in the range of 1.15 ± 0.20 (or between 0.95 and 1.35) with a 95% of confidence. There is no intersection between these two 95% confidence intervals. Thus a significant advantage of the MS modality over RGB on discrimination of polyps and skeletons can be inferred.

c. SVM classification

As the spectra of polyp and skeleton pixels overlapped each other and shown an unsharp divergence (which is clearly shown in Fig. 11(d), and is discussed in Section 5.a), machine learning methods were used to compare between the MS and RGB modalities on their ability to classify
pixels of polyps and skeletons. The comparison were based on individual pixel-wise spectral features without shape and texture information. The machine learning toolbox scikit-learn (version 0.20.0) (Pedregosa et al. 2011) was used for data analysis and visualization. A brief test based on a subset of MS$_{t-v}$ was conducted involving common machine learning algorithms including k-nearest neighbors, naive Bayes, logistic regression, and SVMs with linear and non-linear kernels. The SVM with a non-linear kernel turned out to have the best accuracy thus was chosen in the following analysis.

SVM classifiers with a radial basis function (RBF) kernel were trained with a five-fold cross validation over training-validation data sets RGB$_{t-v}$ and MS$_{t-v}$. A two-step grid search was conducted to find the best hyper-parameters C and γ, where C is the penalty parameter and γ is the RBF kernel parameter (Hsu et al. 2003). The target of the grid search was to maximize the metric of the three-class G-mean3 defined as Eq. (8). The first step used a parameter search grid increasing with the base of ten and ranging from 10^{-4} to 10^7. The second step used a finer grid increasing with the base of two, centered at the maximum of the first grid. The G-mean3 of the second grid search step over RGB$_{t-v}$ and MS$_{t-v}$ are shown in Fig. 6. It can be seen that the G-mean3 for the classifications of MS pixels are larger than that of the RGB pixels, and it indicates a better classification accuracy of the MS modality over RGB. For the MS grid search, a combination of $C = 4$ and $\gamma = 128$ resulted in the largest G-mean$^3 = 0.81$. For the RGB grid search, a combination of $C = 512$ and $\gamma = 512$ resulted in the largest G-mean$^3 = 0.69$.

After cross validation, the selected hyper-parameters C and γ were used to train SVM classifiers on the entire RGB$_{t-v}$ and MS$_{t-v}$, respectively. The trained classifiers were tested on the corresponding training sets first. For the MS classifier deployed on MS$_{t-v}$, the resulting G-mean3 was 0.91, and the G-mean2 of the three binary tests were 0.96, 0.90, and 0.96. Analogously, the RGB
classifier deployed on RGB_{t-v} resulted a G-mean$_3$ of 0.68, and the G-mean$_2$ of the three binary tests were 0.69, 0.80, and 0.87.

The trained classifiers were then tested on the test data sets RGB_{test} and MS_{test}. In order to quantitatively assess the classifiers, confusion matrices indicating the correctly and incorrectly classified pixels are shown in Fig. 7 along with the visualized results of the three binary tests namely polyp/non-polyp, skeleton/non-skeleton, and background/non-background. For MS_{test}, the G-mean$_3$ was 0.81, and the G-mean$_2$ of the three tests were 0.91, 0.79, and 0.90. It seemed easier for the MS classifier to distinguish between background and non-background pixels than to distinguish between polyp and skeleton pixels. For RGB_{test}, the G-mean$_3$ was 0.64, and the G-mean$_2$ of the three tests were 0.66, 0.77, and 0.85. Those G-mean$_2$ demonstrate that the MS classifier has an improved ability to discriminate polyps from skeletons over the RGB classifier, while the two classifiers has a similar ability to discriminate coral segments (i.e., polyps and skeletons) from the background.

The RGB classifier seems underfitted in the classifications of RGB_{t-v} and RGB_{test}. The so called “high bias” problem is considered to result from insufficient features (only three) extracted from the three-channel RGB image. On the contrary, the MS classifier seems overfitted in the classifications of RGB_{t-v} and RGB_{test}. The so called “high variance” problem is considered to result from an insufficient size of the training set. In addition, MS_{test} was essentially extracted from the same images as MS_{t-v}. In order to get rid of the potential influence of similar neighboring pixels, another annotated MS image was used to make up a new data set MS_{new} to further test the MS classifier for its generalization ability. Analogously, the confusion matrix and the visualized results of the three binary tests are shown in Fig. 8. In this case, the G-mean$_3$ was 0.72, and the G-mean$_2$ of the three tests were 0.87, 0.69, and 0.86. Compared to the performance on the data set MS_{test}, the MS classifier generally keeps the ability of discriminating polyps from skeletons, and
it shows a decreased ability of discriminating skeletons from the background. We further analysis
the performance of the MS classifier and discuss its potential improvements in Section 5.b.

Note the misclassified pixels which clustered surrounding the corals branch, especially in the
last two columns in Fig. 7 and in Fig. 8. When refereed to Fig. 4, most of those misclassified
pixels were recognized as the red spots and brownish threads covering the supportive latticed
structures and the white board background. And those spots and threads mainly perturbed the
classification of the skeleton pixels against background pixels. We discuss the source and impact
of those substance in Section 5.a.

d. Polyp activity estimation

The trained MS classifier was then used on the 36 images in MS\textsubscript{act} to classify polyp and non-
polyp pixels. The computational classified results were evaluated by the annotated gold standard
to establish polyp/non-polyp binary confusion matrices visualized in Fig. 9. The G-mean\textsubscript{2} of the
36 images for the polyp/non-polyp tests ranged from 0.81 to 0.87. Compared with the G-mean\textsubscript{2} =
0.91 for the classification of the MS\textsubscript{test} data set and the G-mean\textsubscript{2} = 0.87 for the classification of
the independent MS image, the MS classifier featured a good generality.

Based on the classified polyp pixels in MS\textsubscript{act}, the polyp activities were estimated using Eq. 10.
The polyp activities derived from the annotated polyp pixels in MS\textsubscript{act} were used to validate the
estimated activities. In Fig. 10(a), the estimated and annotated activities were plotted in a Cartesian
coordinate system and illustrated a linear relationship. The linear relationship was fitted by the
linear least squares method with the Pearson correlation coefficient of 0.957. By using Fisher’s
transformation (Fisher 1950), the 95% confidence interval of the Pearson correlation coefficient
was calculated as between 0.917 and 0.978. It implies that the estimated activities are consistent
with the annotated activities of the polyps. A root-mean-square deviation of the 36 scatter points

20
was calculated to be 0.095. Based on the classified polyp pixels of all the 144 MS images (30 minutes between image captures), the polyp activity sequence of the entire 72-hour monitoring was estimated and plotted in Fig. 10(b).

5. Discussion

a. Spectra of polyps and skeletons

The averaged spectra of all the polyp and skeleton pixels in the MS image shown in Fig. 4 were plotted in the A0 panel of Fig. 11(d). The spectrum of the averaged polyp pixels overlapped with the spectrum of the averaged skeleton pixels, while the former had a lower standard deviation. According to a study on pigments in white *Lophelia pertusa*, carotenoid-proteins are only present in living polyps, which leads to an in vivo absorbance peak at 409 nm and an in vitro absorbance peak at 429 nm (Elde et al. 2012). However, the absorbance difference is not clear in the A0 panel of Fig. 11(d). To elaborate on this, the whole A0 was divided into seven sub-areas A1 to A7 as marked out by boxes in Fig. 4(a) and (b). The averaged spectra of all polyp and skeleton pixels in the sub-areas were plotted in Fig. 4(d) with the axes and legends defined in Fig. 4(c).

By carefully looking at the coral in Fig. 4, the polyps had different transparency, and there were red spots and brownish threads distributed on the skeleton. The red spots were probably eggs of not hatched Artemia that aggregated on the skeleton. The brownish threads were hydrozoans that had been brought into the system during coral collection. Healthy corals are covered by a layer of coenosarc (or epithelium) which can be lost due to disturbance and might take some time to recover. The hydrozoans settle on the skeleton where the coenosarc is incomplete. Within the study on pigments in white *Lophelia pertusa* by Elde et al. (2012), polyps were pulled out using tweezers as in vivo samples and placed directly on sea-water (filtered) soaked Whatman GF/C 25-
mm glass fiber filters. And the in vitro sample was prepared by crushing frozen corals in a mortar followed by extracting and filtering to remain pigments without debris. While in our study, the semi-transparent rough surface of polyps were directly imaged, and the skeletons were covered by different substances. We suggest that the varied skeleton spectra are due to the mottled skeletons with incomplete coenosarc and covered hydrozoans, while the varied polyp spectra are due to the rough surface of the semi-transparent tentacles. As a result, the spectra of polyp and skeleton pixels in our in situ study were different from the results of Elde et al. (2012).

b. Potential improvements

Performance of different MS classifiers deployed on MS_{t-v}, MS_{test}, and MS_{new} is presented in Fig. 12. The MS classifiers were trained on different sizes of MS_{t-v} range from 112 to 115,200. The relative time consumptions for training the corresponding classifiers were also plotted. As the size of the training set increases from 112 to 7200, the G-mean_3 and G-mean_2 of polyps for classifications of MS_{test} and MS_{new} grow progressively at a low time consumption. As the size of the training set continuous to increase, the G-mean_3 and G-mean_2 of polyps for classifications of MS_{test} and MS_{new} grow slowly but cost more and more time for training. The surge in time consumption is due to that the SVM with a non-linear kernel is not efficient over large data sets. Therefore, other machine learning methods (such as neural network) can be used along with a “mini-batch” or a “stochastic” training scheme to train a MS classifier with more data in order to solve the “high variance” problem.

In this study, the pixel-level classification based on single-pixel information didn’t take advantage of the neighbor pixel groups and context features, whereas these features can boost the classification accuracy once effectively used. A multispectral imaging system with a gray camera can provide (non-redundant) higher spectral resolution and higher spatial resolution (without Bayer
pattern layer in an RGB camera). Thus MS images can be potentially further optimized and
might become better than the conventional RGB images for classifiers built with complex neural
networks. Integrating other sensors such as a turbidity meter in the system can improve the in-
terpretation of estimated activity. And for a long-term monitoring, the periodic change in each
spectral channel becomes important.

c. A simplified pixel annotation alternative

Even the collected images in this study were clear and sharp enough for a person to discriminate
apolyps from skeletons, the mask based annotation was still time consuming. A simplified pixel
annotation was conducted as a time-saving alternative. Pixels representing the three classes were
manually picked from twelve MS images equally sampled (with an interval of six hours) in the 72-
hour sequence. On each of these images, 200 sample pixels in total were selected randomly com-
prising representative pixels for the three classes. SVM training and classification were performed
similar to the procedures described in Section 4, and yielded G-mean$_3$ of 0.69, and G-mean$_2$ of
0.88, 0.65, and 0.83 for the polyp/non-polyp, the skeleton/non-skeleton, and the background/non-
background binary tests, respectively. Comparing the annotated and estimated polyp activities pro-
vided a Pearson correlation coefficient of 0.882 and a root-mean-square deviation of 0.144 among
the 36 activity verification images in MS$_{act}$. By using Fisher’s transformation (Fisher 1950), the
95% confidence interval of the Pearson correlation coefficient was calculated as between 0.779
and 0.939. While the annotation effort was much lower than for the full segmentation, the results
also attained slightly lower performance values.
6. Conclusion

In this paper, we took advantage of a former proposed tunable LED-based underwater multispectral imaging system for classification and activity estimation of white *Lophelia pertusa* polyps. Results shown that the polyps of *Lophelia pertusa* can be more easily distinguished from its skeletons by analysis of the finer resolved eight-dimensional spectral reflectance signatures compared to the three-channel RGB data. During a 72-hour monitoring with a half-hour temporal resolution in the lab, the activity of polyps was estimated based on the results of the multispectral pixel-level classification using SVM classifiers. The estimated polyp activity was consistent with that of the manual annotation, where the correlation coefficient was 0.957 for the verification data set throughout the 72-hour monitoring with an interval of two hours.

In future studies we will investigate the relationship between spectral absorbance of pigments and imaged spectral reflectance of tissues. Also, we will deploy the low-cost and reliable TuLU-MIS system for in situ activity monitoring of *Lophelia pertusa*.

Acknowledgments. This work is supported by China Scholarship Council (201606320111) and German Research Foundation (DFG) Cluster of Excellence FUTURE OCEAN (CP1626). It is publication No. 32 of the DeepSea Monitoring group of GEOMAR. The authors express their sincere gratitude to the staff of the GEOMAR Technology and Logistics Centre for their generous technical support, especially to Thorsten Schott, Tim Weiß, and Matthias Wieck. We would also like to thank Yilu Guo (Zhejiang University) and all the colleagues at the DeepSea Monitoring group of GEOMAR, especially to Jochen Mohrmann and Yifan Song, for joining discussions and providing comments. Additionally, Hongbo Liu would like to thank Yufei Jin for her patience, trust and support.
References

Accepted for publication in *Journal of Atmospheric and Oceanic Technology*. DOI 10.1175/JTECH-D-19-0139.1.

LIST OF FIGURES

Fig. 1. The cold-water coral *Lophelia pertusa* reef sustain habitats for diverse fauna. (a) *Mycale lingua* sponges, *Sebastes viviparous* (redfish), and *Cancer pagurus* (edible crabs) are surrounded by white *Lophelia pertusa* colonies in this photo taken from the manned submersible JAGO diving at the Tisler Reef in Norway during the RV POSEIDON cruise POS526 (Greinert and Schoening 2019). (b) A close-up photograph of a branch of white *Lophelia pertusa* whose polyps and skeletons are similar in color.

Fig. 2. The white *Lophelia pertusa* branch used in the experiment.

Fig. 3. Setup of TuLUMIS for the monitoring experiment. (a) Scheme of TuLUMIS where a computer synchronized a camera and a series of LEDs for imaging. (b) Layout of the monitoring experiment. Eight pairs of LEDs were evenly distributed in a circle on a lampshade, and the camera was mounted in the middle. The lampshade was submerged right above the coral sample in the water tank. (c) Front view of the lampshade. Each pair of LEDs were fixed oppositely, and their colors are indicated by the arrows.

Fig. 4. Images acquired by the MS method and the RGB method for comparison and their annotation. The eight-channel spectral image acquired by the MS method was fused into RGB channels for visualization. The manually annotated classes (i.e., blue for polyp, pink for skeleton, and yellow for background) were derived to be a gold standard in the following analysis.

Fig. 5. Distributions of sample normalized spectral similarity $\delta^{(RGB, \Gamma)}$ and $\delta^{(MS, \Gamma)}$ between the polyp class and the skeleton class for the 10,000 randomly selected samples of size 1000. The two distributions are approximately normal. By statistical inference, $\delta^{(MS, \Gamma)}$ is larger than $\delta^{(RGB, \Gamma)}$ in terms of 95% confidence intervals which implies that it is easier for the MS method to discriminate polyps from skeletons thanks to its finer resolved spectrum than the RGB method.

Fig. 6. Selection of the hyper-parameters of C and γ in the SVM classifiers by grid searching. The G-mean metric was used to evaluate the accuracy of the classification. The red boxes mark the combination of parameters resulted in the best accuracy. The darker shading in the MS grid illustrates a better classification accuracy by the MS imaging modality compared to RGB.

Fig. 7. Confusion matrices and visualized results of the three binary tests of the classifications of the MS and RGB images. The first column shows the confusion matrices of the classifications (P for polyp, S for skeleton, and B for background) of the MS and RGB test data sets, respectively, where a darker shading represents a larger number. The rest of the columns show the results of the binary test of polyp/non-polyp, skeleton/non-skeleton, background/non-background for the two images, respectively. Compared to the RGB classifier, the MS classifier features a similar ability to discriminate between the background and coral segments, but an improved ability to discriminate polyps from skeletons.

Fig. 8. Confusion matrix and visualized results of the three binary tests of the classifications of an independent MS image (i.e. data set MS$_{\text{new}}$) to further test the generalization ability of the MS classifier. The subfigures share the same definition and style as those in Fig. 7. The MS classifier generally keeps the ability of discriminating polyps from skeletons and the background on the independent MS image.
Fig. 9. Results of the binary tests of polyp/non-polyp for the MS images in MS_{act} acquired throughout the 72-hour monitoring with an interval of two hours. The binary G-mean of polyp/non-polyp tests ranged between 0.81 and 0.87 for the 36 images.

Fig. 10. Estimated and annotated activities of polyps. (a) shows a linear relationship between the estimated activities and the annotated activities for the 36 MS images in MS_{act}. Based on the classified polyp pixels of all the 144 MS images, (b) shows the estimated polyp activities during the entire 72-hour monitoring with an interval of 0.5 hour.

Fig. 11. Averaged spectra of the polyp and skeleton pixels in the MS image shown in Fig. 4. The green frames divide the fused pseudo-color image shown in (a) in seven areas. (b) shows the annotated polyp and skeleton masks of (a). (d) shows the averaged spectra of the polyp and skeleton pixels as curves with their standard deviation as shades. The axes and legends of all the plots in (d) are defined in (c). The varied spectra of polyps and skeletons might result from the different transparency and roughness of the polyps and attached substances on the skeletons.

Fig. 12. Performance of MS classifiers with different training set sizes and the corresponding relative time consumptions for training. The time consumptions were normalized by dividing the maximum.
Fig. 1. The cold-water coral *Lophelia pertusa* reef sustain habitats for diverse fauna. (a) *Mycale lingua* sponges, *Sebastes viviparous* (redfish), and *Cancer pagurus* (edible crabs) are surrounded by white *Lophelia pertusa* colonies in this photo taken from the manned submersible JAGO diving at the Tisler Reef in Norway during the RV POSEIDON cruise POS526 (Greinert and Schoening 2019). (b) A close-up photograph of a branch of white *Lophelia pertusa* whose polyps and skeletons are similar in color.
FIG. 2. The white *Lophelia pertusa* branch used in the experiment.
FIG. 3. Setup of TuLUMIS for the monitoring experiment. (a) Scheme of TuLUMIS where a computer synchronized a camera and a series of LEDs for imaging. (b) Layout of the monitoring experiment. Eight pairs of LEDs were evenly distributed in a circle on a lampshade, and the camera was mounted in the middle. The lampshade was submerged right above the coral sample in the water tank. (c) Front view of the lampshade. Each pair of LEDs were fixed oppositely, and their colors are indicated by the arrows.
FIG. 4. Images acquired by the MS method and the RGB method for comparison and their annotation. The eight-channel spectral image acquired by the MS method was fused into RGB channels for visualization. The manually annotated classes (i.e., blue for polyp, pink for skeleton, and yellow for background) were derived to be a gold standard in the following analysis.
FIG. 5. Distributions of sample normalized spectral similarity $\delta^{(\text{RGB}, \Gamma)}$ and $\delta^{(\text{MS}, \Gamma)}$ between the polyp class and the skeleton class for the 10,000 randomly selected samples of size 1000. The two distributions are approximately normal. By statistical inference, $\delta^{(\text{MS}, \Gamma)}$ is larger than $\delta^{(\text{RGB}, \Gamma)}$ in terms of 95% confidence intervals which implies that it is easier for the MS method to discriminate polyps from skeletons thanks to its finer resolved spectrum than the RGB method.
FIG. 6. Selection of the hyper-parameters of C and γ in the SVM classifiers by grid searching. The G-mean$_3$ metric was used to evaluate the accuracy of the classification. The red boxes mark the combination of parameters resulted in the best accuracy. The darker shading in the MS grid illustrates a better classification accuracy by the MS imaging modality compared to RGB.
Table 1 shows the confusion matrices for the classifications of the MS and RGB images. The first column shows the confusion matrices of the classifications (P for polyp, S for skeleton, and B for background) of the MS and RGB test data sets, respectively, where a darker shading represents a larger number. The rest of the columns show the results of the binary test of polyp/non-polyp, skeleton/non-skeleton, background/non-background for the two images, respectively. Compared to the RGB classifier, the MS classifier features a similar ability to discriminate between the background and coral segments, but an improved ability to discriminate polyps from skeletons.

![Confusion Matrix and Visualized Results](image)

Table 1 Confusion matrices and visualized results of the three binary tests of the classifications of the MS and RGB images. The first column shows the confusion matrices of the classifications (P for polyp, S for skeleton, and B for background) of the MS and RGB test data sets, respectively, where a darker shading represents a larger number. The rest of the columns show the results of the binary test of polyp/non-polyp, skeleton/non-skeleton, background/non-background for the two images, respectively. Compared to the RGB classifier, the MS classifier features a similar ability to discriminate between the background and coral segments, but an improved ability to discriminate polyps from skeletons.
FIG. 8. Confusion matrix and visualized results of the three binary tests of the classifications of an independent MS image (i.e. data set MS_{new}) to further test the generalization ability of the MS classifier. The subfigures share the same definition and style as those in Fig. 7. The MS classifier generally keeps the ability of discriminating polyps from skeletons and the background on the independent MS image.
FIG. 9. Results of the binary tests of polyp/non-polyp for the MS images in MS\textsubscript{act} acquired throughout the 72-hour monitoring with an interval of two hours. The binary G-mean\textsubscript{2} of polyp/non-polyp tests ranged between 0.81 and 0.87 for the 36 images.
FIG. 10. Estimated and annotated activities of polyps. (a) shows a linear relationship between the estimated activities and the annotated activities for the 36 MS images in MS_{act}. Based on the classified polyp pixels of all the 144 MS images, (b) shows the estimated polyp activities during the entire 72-hour monitoring with an interval of 0.5 hour.
FIG. 11. Averaged spectra of the polyp and skeleton pixels in the MS image shown in Fig. 4. The green frames divide the fused pseudo-color image shown in (a) in seven areas. (b) shows the annotated polyp and skeleton masks of (a). (d) shows the averaged spectra of the polyp and skeleton pixels as curves with their standard deviation as shades. The axes and legends of all the plots in (d) are defined in (c). The varied spectra of polyps and skeletons might result from the different transparency and roughness of the polyps and attached substances on the skeletons.
Fig. 12. Performance of MS classifiers with different training set sizes and the corresponding relative time consumptions for training. The time consumptions were normalized by dividing the maximum.