Momentum Fluxes of Gravity Waves Generated by Variable Froude Number Flow over Three-Dimensional Obstacles

STEPHEN D. ECKERMANN
Space Science Division, Naval Research Laboratory, Washington, D.C.

JOHN LINDEMAN
College of Science, George Mason University, Fairfax, Virginia

DAVE BROUTMAN AND JUN MA
Computational Physics, Inc., Springfield, Virginia

ZAFTER BOYBEYI
College of Science, George Mason University, Fairfax, Virginia

(Manuscript received 10 November 2009, in final form 19 February 2010)

ABSTRACT

Fully nonlinear mesoscale model simulations are used to investigate the momentum fluxes of gravity waves that emerge at a “far-field” height of 6 km from steady unsheared flow over both an axisymmetric and elliptical obstacle for nondimensional mountain heights \(h_m = \frac{h_m}{C_0} \) in the range 0.1–5, where \(h_m \) is the surface Froude number. Fourier- and Hilbert-transform diagnostics of model output yield local estimates of phase-averaged momentum flux, while area integrals of momentum flux quantify the amount of surface pressure drag that translates into far-field gravity waves, referred to here as the “wave drag” component. Estimates of surface and wave drag are compared to parameterization predictions and theory. Surface dynamics transition from linear to high-drag (wave breaking) states at critical inverse Froude numbers \(F_{r,c}^{-1} \) predicted to within 10% by transform relations. Wave drag peaks at \(F_{r,c}^{-1} < h_m \leq 2 \), where for the elliptical obstacle both surface and wave drag vacillate owing to cyclical buildup and breakdown of waves. For the axisymmetric obstacle, this occurs only at \(h_m = 1.2 \). At \(h_m \approx 2–3 \) vacillation abates and normalized pressure drag assumes a common normalized form for both obstacles that varies approximately as \(h_m^{1.3} \). Wave drag in this range asymptotes to a constant absolute value that, despite its theoretical shortcomings, is predicted to within 10%–40% by an analytical relation based on linear clipped-obstacle drag for a Sheppard-based prediction of dividing streamline height. Constant wave drag at \(h_m \approx 2–5 \) arises despite large variations with \(h_m \) in the three-dimensional morphology of the local wave momentum fluxes. Specific implications of these results for the parameterization of subgrid-scale orographic drag in global climate and weather models are discussed.

1. Introduction

Finite computing resources force global numerical weather and climate prediction models to operate at spatial resolutions that prevent an explicit simulation of the full spectrum of dynamics that can arise when surface flow impinges on mesoscale orography. Such dynamics exert drag forces on the larger-scale flow, so all credible numerical weather and climate prediction models incorporate parameterizations of these unresolved, or subgrid-scale, orographic mesoscale drag forces (hereafter OMD). Guidance for OMD parameterization comes from observations, numerical modeling, and laboratory experiments. Mesoscale dynamics observed in and around realistic three-dimensional mountain ranges remain challenging to model and reproduce even with state-of-the-art tools (e.g., Smith et al. 2006). More reproducible OMD findings have emerged from idealized numerical and laboratory simulations in which a prescribed upstream flow...
of constant x-directed velocity U and buoyancy frequency N impinges upon an isolated three-dimensional elliptical obstacle $h(x, y)$ of peak height h_m. A typical form, also used in this work, is

$$h(x, y) = \frac{h_m}{\left[1 + (x/a)^2 + (y/b)^2\right]^{3/2}}. \quad (1)$$

To first order, the dynamical response depends on the normalized peak obstacle height

$$\hat{h}_m = Nh_m/U = Fr^{-1}, \quad \text{(2)}$$

where Fr is surface Froude number. When $\hat{h}_m \ll 1$, flow passes across the obstacle, generating a linear orographic gravity wave response whose three-dimensional form and areally integrated momentum flux D_L can be computed analytically (Phillips 1984; Smith 1988). As $\hat{h}_m \rightarrow 1$, total pressure drag across the mountain, D_p, begins to exceed the linear solution D_L by factors of up to ~ 2. These so-called “high drag” states form as flow stagnates aloft (wave breaking) and on the upstream slope (flow splitting), triggering leeside collapse of isentropes, fast downslope winds, turbulence, and downstream vortices (Smolarkiewicz and Rotunno 1989; Miranda and James 1992; Ólafsson and Bougeault 1996; Schär and Durrant 1997). At $\hat{h}_m \gtrsim 2$–3 wave breaking eases or abates and pressure drag eventually drops below D_L. As \hat{h}_m increases, a progressively deeper surface flow layer stagnates upstream and splits so that only the flow above this layer can pass across the obstacle peak, generating gravity waves of reduced amplitude and wavelength compared to linear predictions (e.g., Ding et al. 2003; Lindeman et al. 2008).

The responses also vary with the obstacle’s aspect ratio

$$\beta = \frac{b}{a}. \quad \text{(3)}$$

Variations with β in the linear ($\hat{h}_m \ll 1$) hydrostatic limit were derived analytically by Phillips (1984). Dynamical responses close to the mountain as a function of both \hat{h}_m and β were first proposed by Smith (1989b) based on limits of the linear hydrostatic transform relations of Smith (1988) for onset of wave breaking ($\hat{h}_m > \hat{h}_{cb}$) and flow splitting ($\hat{h}_m > \hat{h}_{cs}$).

Figure 1 reproduces the resulting regime diagram, which demarks linear regions at $\hat{h}_m < \hat{h}_c$ in white from various gray-shaded nonlinear responses at $\hat{h}_m > \hat{h}_c$, based on a critical normalized obstacle height (or critical inverse Froude number) $\hat{h}_c = Fr_c^{-1} = \min[\hat{h}_{cb}, \hat{h}_{cs}]$. At $\beta \gg 1$ it predicts transition from linear wave solutions at $\hat{h}_m \ll 1$ to a wave breaking–only regime at \hat{h}_m values slightly less than unity, prior to the onset of both wave breaking and flow splitting at $\hat{h}_m \gtrsim 1$. As ellipticity is reduced ($\beta \rightarrow 1^+$), the wave breaking region narrows and eventually disappears at $\beta \sim 1$ owing to progressively greater wave-field dispersion. For $\beta \lesssim 1$ a transition from linear waves to pure flow-splitting dynamics occurs at progressively larger \hat{h}_c values as β decreases, along with progressively smaller pressure drags (Phillips 1984). These predicted regimes have been tested and broadly confirmed using numerical models and tank experiments (e.g., Miranda and James 1992; Ólafsson and Bougeault 1996; Vosper et al. 1999; Bauer et al. 2000; Ding et al. 2003).

Since Fig. 1 was formulated by Smith (1989b) for responses in just the lowest few kilometers above the mountain, numerical and laboratory studies have focused on quantifying the total pressure drag across the obstacle and its variation with \hat{h}_m and β and have not quantified the fraction of the pressure drag due to gravity waves that propagates away from the obstacle at larger (nonlinear) \hat{h}_m values. OMD parameterizations require estimates of both the total pressure drag near the mountain and the far-field gravity wave component. Some studies have investigated wave properties and/or momentum fluxes for specific cases (Miranda and James 1992; Vosper et al. 1999; Vosper 2000; Ding et al. 2003; Lindeman et al. 2008; Wells et al. 2008). Yet, despite extensive literature on linear wave properties at $\hat{h}_m \ll 1$ and high-drag wave breaking states at $\hat{h}_m \sim 1$, we are not
aware of any work that has as yet systematically documented both surface pressure drag and gravity wave momentum fluxes from idealized three-dimensional obstacles over the full range of potential \(h_m \) values: closest perhaps is the work of Welch et al. (2001) for two-dimensional sinusoidal topography (see also Aguilar and Sutherland 2006).

The resulting uncertainty directly impacts the current generation of OMD parameterizations, which have been heavily influenced by this literature on drag due to idealized three-dimensional obstacles. Most modern OMD schemes fit subgrid-scale mesoscale orography within grid boxes to equivalent elliptical obstacle shapes in order to utilize their documented drag properties (Lott and Miller 1997; Scinocca and McFarlane 2000). Yet these schemes must quantify both the total surface drag and the propagating gravity wave component, since gravity waves propagate vertically and can deposit momentum flux at higher altitudes, while the remaining drag is confined and applied near the surface. Given the lack of quantitative guidance on orographic gravity wave momentum fluxes from the modeling literature to date, simple theoretical estimation methods are employed that vary among OMD implementations (Lott and Miller 1997; Gregory et al. 1998; Scinocca and McFarlane 2000; Webster et al. 2003) and require independent research results for objective validation.

Here we conduct fully nonlinear mesoscale model simulations of flow across obstacles of the form (1) at \(\beta \) values of 1 and 3 for a range of \(h_m \) values shown with solid circles in Fig. 1. Our focus is on quantifying the momentum fluxes of propagating gravity waves that emerge at some altitude \(z_i \) above the nonlinear surface dynamics near the obstacle and how these “far field” wave fluxes relate both to the total surface pressure drag and to simpler predictions used in OMD parameterizations.

2. Modeling and diagnostic tools

a. WRF simulations

We use version 3.0 of the Advanced Research Weather Research and Forecasting (WRF) model (Skamarock et al. 2008). The WRF model is nonlinear and fully compressible, discretized with fifth (third)-order finite differences for the horizontal (vertical) advection, and third-order Runge–Kutta for the time stepping.

Our three-dimensional computational domain \((x, y, z) \) is square horizontally with the obstacle \(h(x, y) \) in (1) located slightly upstream of the domain center to allow more room for dynamics downstream of the obstacle to evolve, such that \(-L/3 \leq x \leq 2L/3 \) and \(-L/2 \leq y \leq L/2 \) for \(L = 900 \) km and \(z = 0–30 \) km. Inflow/outflow conditions are applied at the lateral boundaries. The horizontal gridpoint resolution \((\Delta x, \Delta y) \) is \(1.5 \times 1.5 \) km\(^2\). Our vertical domain from 0 to 30 km is divided into 200 levels using the WRF pressure-based vertical coordinate, 120 of which are below \(z = 15 \) km where the vertical resolution \(\Delta z \approx 125 \) m, with \(\Delta z \) gradually increasing above 15 km.

In every experiment we adopt constant vertical profiles of \(N = 0.01 \) rad s\(^{-1}\) and \(x \)-directed horizontal velocity \(U = +10 \) m s\(^{-1}\), then vary \(h_m \) and \(\beta \) from experiment to experiment. We choose \(a = 10 \) km to minimize the rotational and nonhydrostatic linear drag modifications that become significant at larger and smaller widths, respectively (Klemp and Lilly 1980; Miranda and James 1992) and then set \(b = \beta a \). We adopt a frictionless (free slip) lower boundary, a 1.5-order turbulent closure scheme, and omit Coriolis effects \((f = 0) \) and moisture.

To minimize artificial reflection of gravity waves from the model’s rigid lid, the top half of the domain \((z = 15–30 \) km) contains implicit vertically varying Rayleigh friction of the Klemp et al. (2008) form. Details are given in section 2d.

b. Diagnostic Fourier transform method

To help characterize three-dimensional gravity wave fields in WRF simulations, we employ a diagnostic Fourier transform (FT) method introduced by Lindeman et al. (2008). The method utilizes the steady-state \((t \rightarrow \infty) \) form of the time-dependent Fourier-ray algorithm of Broutman et al. (2006). For the case of vertical velocity,

\[
\dot{w}(x, y, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{w}(k_x, l, z) e^{ik_x x + il y} dk_x dl,
\]

the method solves for \(\hat{w}(k, l, z) \) using ray methods (Broutman et al. 2002). For the specific case of constant \(U \) and \(N \) profiles considered here, the Fourier-ray solutions at heights \(z \) and \(z_i \) are related as

\[
\hat{w}(k, l, z) = \left[\frac{\rho(z_i)}{\rho(z)} \right]^{1/2} \hat{w}(k, l, z_i) e^{i\omega_m(z - z_i)},
\]

where vertical wavenumber \(m \) follows from the dispersion relation

\[
m = -\left(k^2 + l^2 \right)^{1/2} \left(\frac{N^2}{\omega_m^2} - 1 \right)^{1/2},
\]

\((k, l)\) is horizontal wavenumber, and, since we assume stationary waves, intrinsic frequency \(\omega = -kU \). To evaluate (4) we set the Fourier coefficients with \(k > 0 \) equal to zero (assuming \(U > 0 \)), multiply the Fourier coefficients with \(k < 0 \) by 2, and take the real part of the
resulting Fourier transform \(\hat{w}(x, y, z)\); that is, \(w = \text{Re}(\hat{w})\). The choices of \(k < 0\) and \(m < 0\) ensure upward (downward) group (phase) propagation. Additional terms in the dispersion relation can be included (Broutman et al. 2009) but are omitted here since they have minor effects. We also omit trapping and tunneling terms (Broutman et al. 2003, 2009) due to the absence of shear.

For linear problems \((h_m \ll 1)\) the FT method can be initialized at the surface \(z_i = 0\) using the orographic elevations \(h(x, y)\). The lower boundary condition

\[
\hat{w}(k, l, z_i = 0) = -\omega \hat{h}(k, l),
\]

where \(\hat{h}(k, l)\) is the Fourier transform of \(h(x, y)\), yields the linear steady-state mountain wave response using (4)–(6).

In characterizing mountain waves in nonlinear WRF simulations \((h_m \gtrsim 1)\), we assume that nonlinear dynamics are confined to heights \(z < z_i\) nearer the mountain and that a nearly linear stationary wave response emerges at \(z_i\) after some time \(t_i\) (Lindeman et al. 2008).

For the case of vertical velocity, WRF output initializes the FT method as

\[
\hat{v}(k, l, z_i, t_i) = \hat{W}_v(k, l, z_i, t_i),
\]

where \(\hat{W}_v(k, l, z_i, t_i)\) is the horizontal two-dimensional Fourier transform of the WRF vertical velocity field at height \(z_i\) and time \(t_i\). Final values of \(z_i\) and \(t_i\) are chosen after inspection of the WRF-simulated dynamics (see section 2d): typical values used in our work will be \(z_i = 6\) km and \(t_i = 24\) h.

The gravity wave polarization relations allow us to convert \(\hat{w}(k, l, z)\) into corresponding solutions for other variables, such as the horizontal velocity components \(\hat{u}\) and \(\hat{v}\). Here we utilize the resulting complex spatial solutions \(\hat{u}, \hat{v}\) and \(\hat{w}\) defined earlier, whose real parts are the FT solution (4) for \(\hat{u}, \hat{v}\), and \(\hat{w}\), respectively, and whose imaginary parts are the Hilbert transforms of those FT solutions, thus providing local amplitudes and phases of the velocity solutions (e.g., Mercier et al. 2008). This latter property, together with the 0° or 180° phase difference between horizontal and vertical velocity components, allows us to combine \(\hat{u}, \hat{v},\) and \(\hat{w}\) to yield local solutions of phase-averaged momentum flux per unit mass:

\[
\overline{\mathbf{u}w}(x, y, z) = \frac{1}{4}(\hat{u} \hat{w}^* + \hat{u}^* \hat{w});
\]

\[
\overline{\mathbf{v}w}(x, y, z) = \frac{1}{4}(\hat{v} \hat{w}^* + \hat{v}^* \hat{w}),
\]

where asterisks denote a complex conjugate. The relations (9) and (10) differ from other local diagnostics used to quantify wave momentum fluxes (e.g., Durrant 1995) by using a Fourier-ray decomposition of the WRF output to synthesize a phase-averaged result. Their fidelity depends on the linear stationary wave assumptions underpinning this FT method and, thus, are assessed when applied to WRF output in what follows.

\textbf{c. Drag}

1) \textbf{SURFACE PRESSURE DRAG}

The total surface pressure drag across the obstacle

\[
D_p = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p^* (\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}) dx dy,
\]

where \(p^*\) is the pressure anomaly (hereafter we denote WRF anomalies with lowercase primed symbols to distinguish them from spatial realizations of the Fourier-ray solutions, which are unprimed lowercase).

In the linear \((h_m \ll 1)\) hydrostatic approximation, (1) and (11) yield analytical drag solutions of the form

\[
|D_L| = D_L(\beta) = B(\beta) \alpha_0 U^3 N h_m^2,
\]

and peaks at the largest (nonlinear) \(h_m\) values.

Consistent with previous studies (e.g., Miranda and James 1992; Bauer et al. 2000), it will prove most useful for parameterization applications to study nondimensional drag values normalized by the relevant linear prediction:

\[
\tilde{D}_p = \frac{D_p}{D_L}.
\]

In computing \(D_p = |D_p|\), since \(U\) is \(x\) directed, only the \(x\) component of \(D_p\) strictly acts as a drag on the flow and, due to symmetry of the problem, the \(y\) components (sometimes referred to as lift forces) should integrate to zero. Accordingly many studies simply compute the \(x\) component of (11) only (e.g., Epifanio and Durrant 2001). For consistency, here we compute both components and evaluate (11) by integrating over the full horizontal WRF domain of \(-L/3 \leq x \leq 2L/3\) and \(-L/2 \leq y \leq L/2\).
2) Gravity wave contribution: Wave drag

The component of the drag due to propagating gravity waves at a given height \(z \) is

\[
D_w(z) = \rho(z) \int_{-L/3}^{+L/3} \int_{-L/2}^{+L/2} (u'w', v'w') \, dx \, dy, \tag{15}
\]
where \(u', v', \) and \(w' \) are local WRF zonal, meridional, and vertical velocity anomalies, respectively, at height \(z \). In the linear regime one should recover \(D_w(z) = D_p \approx D_L \) at all heights, a property we utilize in section 2d to tune the WRF sponge layer.

The FT method yields corresponding terms:

\[
D_{f1}(z) = \rho(z) \int_{-L/3}^{+L/3} \int_{-L/2}^{+L/2} (uw, vu) \, dx \, dy; \tag{16}
\]

\[
D_{f2}(z) = \rho(z) \int_{-L/3}^{+L/3} \int_{-L/2}^{+L/2} (uw, uv) \, dx \, dy. \tag{17}
\]

The first expression is the FT analog of the WRF expression (15) using individual Fourier-ray solutions for \(u, v, \) and \(w \). The second expression integrates the phase-averaged Fourier-ray covariance solutions (9) and (10). Since (16) and (17) give identical results, for simplicity here we only use \(D_f \) and refer to it as the diagnostic Fourier-ray drag \(D_f \). We also compute a linear FT drag \(D_{fL} \) computed from (17) using the linear boundary condition (7).

Since these expressions, along with (11), quantify the fraction of the surface pressure drag \(D_p \) that appears at some height \(z \) as gravity wave momentum flux, we will refer to them as “wave drag” estimates. This is not to be confused with the wave drag considered in OMD parameterizations, which is the decelerative force on the atmosphere due to dissipation of orographic gravity wave momentum flux with altitude, which we do not study in this paper.

d. Tuning and validation

A series of linear \((\hat{h}_m \ll 1) \) WRF experiments were performed with varying sponge layer depths and damping rates until computed drag \(D_w \) reproduced the \(t \to \infty \) linear prediction \(D_L \) after time \(t_i \) without subsidiary structure due to partial reflections. We settled on a vertical damping profile from \(z = 15–30 \) km based on Eq. (21) of Klemp et al. (2008) with a damping coefficient at \(z = 30 \) km of 0.2 s\(^{-1}\), slightly larger than the value chosen by Klemp et al. (2008) because of our deeper sponge layer and higher horizontal resolution.

Figure 2a plots resulting \(\hat{D}_w = D_w/D_L \) profiles at 6-hourly intervals for a \(\beta = 1, \hat{h}_m = 0.1 \) obstacle. The profile equilibrates after \(\sim 18 \) h to values close to the hydrostatic linear solution \(\hat{D}_L = 1 \) with little evidence of spurious structure due to sponge-layer reflections. Figure 2b plots the corresponding time series of (normalized) wave drag \(\hat{D}_w \) and \(\hat{D}_f \) at \(z_i = 6 \) km, along with surface pressure drag \(\hat{D}_p \) and the linear \(t \to \infty \) predictions \(\hat{D}_L \) and \(\hat{D}_{fL} \). While surface drag \(\hat{D}_p \to \hat{D}_L = 1 \) in Fig. 2b after only a few hours, wave drag \(\hat{D}_w \) builds up over time to a limiting value of \(\sim 0.975 \) after \(\sim 20 \) h, showing that \(t_i = 24 \) h is long enough to generate the equilibrium wave response at \(z_i = 6 \) km.

This \(\sim 2\% \) reduction in \(D_w \) from \(D_L \) in Fig. 2b was also noted by Schärf and Durran (1997) in their \(h_m = 0.05 \) simulation for an axisymmetric \(a = 10 \) km obstacle. About half of this difference is explained by the \(\pm 1\% \) difference between the linear Fourier-ray drag \(D_{fL} \) and \(D_L \), due to a small nonhydrostatic reduction in drag in the former owing to evanescent modes. The remaining difference is due to lateral propagation of wave flux through the WRF side boundaries, which \(D_{fL} \) does not suffer from because of periodic boundary conditions and wraparound. This boundary absorption increases with altitude as wave fields propagate upward and disperse more horizontally, as evident in the \(D_w \) profiles in Fig. 2a.

Note too that the \(\hat{D}_L \) and \(\hat{D}_w \) curves in Fig. 2b lie virtually on top of one another, confirming the fidelity of the diagnostic FT relations presented in section 2b for this linear example. Detailed validation of these FT flux diagnostics for other linear cases simulated with WRF can be found in Lindeman (2008).

3. Drag evolution for the axisymmetric obstacle

Figure 3 plots the time evolution of the drag due to the axisymmetric obstacle (\(\beta = 1 \)) as \(\hat{h}_m \) is progressively increased from 0.1 to 1.5. The drag values are normalized by the linear hydrostatic prediction (12), where \(B(1) = \pi/4 \) (Phillips 1984).

As \(\hat{h}_m \to 1^- \), the equilibrium surface pressure drag \(\hat{D}_p \) becomes progressively larger than unity (\(\hat{D}_L \)). In the \(\hat{h}_m = 0.1–1.0 \) range no turbulent kinetic energy (TKE) is generated and essentially all the surface drag translates into propagating gravity wave momentum flux at \(z_i = 6 \) km (\(\hat{D}_w \approx \hat{D}_p \)), consistent with the predictions of Fig. 1. However, Fig. 1 also shows that \(\hat{h}_m \) values slightly larger than unity enter a junction point where all the dynamical regimes meet and no clear dynamical response is predicted.

A small increase in \(\hat{h}_m \) from 1.0 to 1.2 triggers an abrupt change in simulated drag behavior in Fig. 3g. Surface drag \(\hat{D}_p \) becomes \(\sim 50\% \) larger than linear predictions and equilibrates to an oscillating state with a period of close to 4 h. Wave drag \(\hat{D}_w \) and \(\hat{D}_f \) at \(z_i = 6 \) km
track one another well and show similar 4-h cycling seen in D_p, but typically at 15%–20% lower values and with a slight phase lag due to vertical propagation. Thus, surface drag no longer translates fully into a propagating wave response at 6-km altitude.

The periodic nature of the drag is due to cyclical wave buildup and breakdown, as depicted in Fig. 4 for the cycle between hours 20 and 24. At hour 20 D_p is large, while D_w is reduced (Fig. 3g) as forced waves propagate upward and build in amplitude at $z_i = 6$ km. One hour later wave drag D_w has grown to the point where isentropes at $z \sim 3$ km in Fig. 4b are superadiabatic and generating enhanced TKE. At hour 22 wave breaking peaks with a large burst of TKE descending the obstacle downslope. This TKE has migrated downstream by hour 23, at which time both surface drag and wave drag have

![Fig. 2. Nondimensional drag for obstacle of $\beta = 1$ and $\hat{h}_m = 0.1$. (a) Vertical profiles of \hat{D}_w at 6, 12, 18, and 24 h. Gray region shows sponge layer. (b) Horizontal dotted line shows $z_i = 6$ km where \hat{D}_w and \hat{D}_f are evaluated and plotted as time series together with surface pressure drag \hat{D}_p and the linear $t \to \infty$ predictions \hat{D}_L and \hat{D}_f.](image)

![Fig. 3. Nondimensional drag as a function of time for the $\beta = 1$ obstacle for normalized obstacle heights \hat{h}_m ranging from (a) 0.1 to (h) 1.5. The various drag curves are labeled at the top of (a). See text for symbol definitions.](image)
been reduced by accumulated local turbulent dissipation and/or upstream responses to wave breaking that increase flow splitting. At hour 24 the isentropic and TKE structures in Fig. 4e return to a morphology almost identical to that at hour 20 as surface drag and wave activity build up again and the cycle repeats. Note that TKE (strong nonlinearity) is confined below $z_i = 6 \text{ km}$, consistent with requirements of the FT method and with the agreement between $\bar{D_w}$ and $\bar{D_f}$ in Fig. 3e. Despite much shorter time series, the axisymmetric obstacle simulations of Miranda and James (1992) and Vosper (2000) show evidence of similar periodic vacillations in both surface and wave drag, but at larger \bar{h}_m values.

A further increase of \bar{h}_m to 1.5 yields a high-drag state with wave breaking above the lee downslope. In contrast to our $\bar{h}_m = 1.2$ result and the $\bar{h}_m = 1.5$ results of Miranda and James (1992), however, drag in Fig. 3h does not vacillate periodically. Instead, $\bar{D_p}$ settles to an approximate equilibrium value of ~ 1.3 while $\bar{D_w}$ builds up gradually to an equilibrium value of ~ 0.9. The former compares favorably to the nonvacillating equilibrium $\bar{D_p} \sim 1.2$ found by Schär and Durran (1997).

Figure 5 plots local gravity wave momentum fluxes at $z_i = 6 \text{ km}$ after 24 h, as derived from WRF output using the FT relations (9) and (10). Figure 5a reveals the expected linear ship-wave response (Smith 1980) at $\bar{h}_m = 0.1$, with net westward $\rho \mathbf{\Pi} (x, y, z)$ peaking in magnitude near the obstacle peak and smaller $\rho \mathbf{\Pi} (x, y, z)$ values distributed antisymmetrically about $y = 0$ and peaking in magnitude in the divergent wing regions. While wave fluxes at $\bar{h} = 1.0$ in Fig. 5b are two orders of magnitude larger [consistent with the scaling (13)], the wave pattern...
is very similar, except the region of maximum $\rho \overline{uw}$ is now displaced slightly downstream. At $\hat{h}_m = 1.2$ and 1.5, wave momentum flux patterns are noticeably modified. Peak $|\rho \overline{uw}|$ regions are narrower and located above the obstacle downslope. For $\hat{h}_m = 1.5$, Lindeman et al. (2008) showed that this results from leeside collapse and ascent of isentropes, which provide a sharp deep region of obstacle-like forcing to the flow that controls the form of the waves at 6 km more than the actual obstacle shape (see also Fig. 4). This narrower forcing generates waves with shorter horizontal wavelengths (Ding et al. 2003; Lindeman et al. 2008), and its less axisymmetric nature reduces three-dimensional propagation of momentum flux into diverging wing regions in Figs. 5c and 5d.

Figure 6 plots the drag time series for $\hat{h}_m = 2–5$. Similar responses are seen in all cases. Here D_p decreases with time to values below unity and does not equilibrate after 24 h. By contrast, D_w steadily increases with time and equilibrates after ~ 15 h at values significantly smaller than D_p, consistent with greater flow splitting and lee-vortex generation at these larger \hat{h}_m values (Schär and Durran 1997).

A cross section of isentropes and TKE at $y = 0$ after 24 h is shown in Fig. 7 for the $\hat{h}_m = 3$ simulation. A sharp zone of isentropic collapse and ascent is evident above the top third of the lee downslope, with TKE peaked sharply within this leeside trough at unstable temperature gradients. As for the $\hat{h}_m = 1.5$ obstacle (Lindeman et al. 2008), Fig. 7 shows that this leeside isentropic structure provides the major obstacle-like forcing for the waves that emerge at $z_i = 6$ km, which are concentrated downstream of the obstacle peak. Similar leeside offsets in wave activity are evident in the $\hat{h}_m = 3.0$ results of Schär and Durran (1997). Since the leeside isentropic structure in Fig. 7 is quite steady with time (not shown), the wave fields that it forces are approximately stationary and steady, and thus their integrated momentum fluxes $\overline{D_w}$ are well described by the FT diagnostic $\overline{D_f}$ in Fig. 6b.

Figure 8 shows the corresponding local wave momentum fluxes $\rho \overline{uw}$ and $\rho \overline{yw}$ at 6 km. Zonal fluxes peak in magnitude above the obstacle downslope due to stationary obstacle-like forcing by leeside isentropic structures as in Fig. 7. These peak fluxes are concentrated within regions of progressively smaller horizontal extent.
as h_m increases, consistent with a progressively higher dividing streamline and flow above passing over a smaller narrower uppermost obstacle peak, forcing waves of correspondingly smaller horizontal wavelength (see Fig. 7). At the largest (most nonlinear) $h_m = 4$ and 5, subsidiary $|\omega n|_{maxima}$ appear in Figs. 8c and 8d at the lateral edges of the obstacle, owing to flow splitting and diversion around the obstacle peak, resulting in Bernoulli-type accelerations that force waves at the cross-stream extremities of the obstacle. A similar high h_m transition in wave forcing to the outer edges of the obstacle was seen in the $b=5$ simulations of Olafsson and Bougeault (1996). The finescale wave structures at the largest h_m may be compromised somewhat by our 1.5-km gridpoint resolution as the clipped obstacle width for wave forcing becomes progressively narrower as the dividing streamline gets progressively higher with increasing h_m.

Since some drag responses do not obviously equilibrate after 24 h, the $h_m = 1.2$ and 3.0 WRF simulations were integrated out to 48 h. Figure 9 shows the resulting drag profiles. Oscillatory pressure and wave drag at $h_m = 1.2$ is clearly a robust equilibrium result. The secular decrease in D_p out to 24 h seen for $h_m = 3.0$ abates in Fig. 9b after ~ 28 h, whereupon D_p increases slightly and then equilibrates at ~ 0.5 at ~ 36 h. Wave fluxes remain largely unchanged during this period. These integrations suggest that drag in the 20–24-h range is close to the long-time-limit equilibrium response.

Thus, Fig. 10 plots mean drag as a function of h_m over the 20–24-h equilibrium range, both in normalized and absolute form. At $0 < h_m < 1$, Fig. 10a shows a gradual linear increase in D_p above unity. A similar small linear increase over this h_m range was modeled by Epifanio and Durran (2001) using weakly nonlinear semianalytical theory. This linear trend breaks at $h_m \approx 1$ with the onset of a peak oscillating high-drag wave breaking state of $D_p = 1.4–1.55$ at $h_m = 1.2$, with D_p decreasing monotonically with h_m thereafter. This mean D_p variation with h_m agrees with that found by Bauer et al. (2000) (who used a slightly different obstacle shape) but differs somewhat from the results of Miranda and James (1992), who found D_p peaking at ~ -1.8 at $h_m \sim 1.5$. Our D_p values at $h_m = 1.5$ and 3 are similar to those of Schär and Durran (1997) but are again smaller than those of Miranda and James (1992). Our results support the contention of Bauer et al. (2000) that the Miranda and James drag values are systematically too large.

Next we study mean D_w values and how they relate to surface pressure drag in the nonlinear h_m range where $D_w/D_p < 1$. A common parameterization approach is to

![FIG. 6. Nondimensional drag as a function of time for the $\beta = 1$ obstacle for normalized obstacle heights h_m ranging from (a) 2.0 to (d) 5.0. Curve definitions are as given in Fig. 3a.](image)

![FIG. 7. Isentropes as a function of x and z (contour interval = 1 K) along the central obstacle axis ($y = 0$) at hour 24 for $h_m = 3$ and $\beta = 1$. Color shading shows turbulent kinetic energy (m2 s$^{-2}$, see color bar). Gray line depicts $z_i = 6$ km where gravity wave momentum fluxes are computed.](image)
estimate the height z_{ds} of the dividing streamline, separating flow over the obstacle peak ($z > z_{ds}$) from flow blocked or diverted around the obstacle ($z < z_{ds}$), as

$$z_{ds} = (1 - \alpha \text{Fr}) \hat{h}_m = \left(\frac{h_m - \frac{U}{N}}{h_{cs}} \right)$$ \hspace{1cm} (18)

(Hunt and Snyder 1980), where

$$\alpha = \frac{h_{cs}}{\text{Fr}_{cs}^{-1}}$$ \hspace{1cm} (19)

the critical inverse Froude number for flow splitting. The “clipped” obstacle for wave forcing is then

FIG. 8. As in Fig. 5 but for $\hat{h}_m = (a) 2.0$, (b) 3.0, (c) 4.0, and (d) 5.0.

FIG. 9. Nondimensional drag as a function of time out to 48 h for the $\beta = 1$ obstacle for normalized obstacle heights $\hat{h}_m = (a) 1.2$ and (b) 3.0. Curve definitions are given in Fig. 3a.
Fig. 10. (a) Nondimensional and (b) absolute mean drag \((t = 20–24 \text{ h})\) and range (gray error bars) vs \(\hat{h}_m\) for \(\beta = 1\) WRF simulations. Dotted gray line at \(\hat{h}_m = 1.1\) demarks responses with and without TKE at larger and smaller \(\hat{h}_m\), respectively. The various drag terms are labeled top right of (a). See text for symbol definitions.

\[h_c(x, y) = \max[h(x, y), z_{db}] \quad \text{(Lindeman et al. 2008), which has a peak height} \]

\[(h_c)_m = h_m - z_{db} = \frac{U}{N}, \quad (20) \]

whose normalized height, from (2), is equal to \(\alpha\). Figure 1 predicts that \(\alpha\) varies with \(\beta\), and it can also vary with different definitions of \(z_{db}\) (see section 6.6 of Baines 1995). Here, for simplicity, we will adopt the Sheppard criterion of \(\alpha = 1\) which, despite its theoretical shortcomings (Smith 1989b), reproduces laboratory measurements of \(z_{db}\) (Snyder et al. 1985; Vosper et al. 1999; Ding et al. 2003).

Large triangles in Fig. 10a show the resulting wave drag \(D_c\) calculated by the FT method using \(h_c(x, y)\) as the linear boundary condition (7) at \(z_i = z_{db}\). An even simpler analytical approximation assumes the linear solution (12) for the clipped obstacle height \((h_c)_m\), which yields a constant “saturated” clipped wave drag (see the appendix)

\[D_{cl} = B(\beta)\Lambda_0\alpha^2 \frac{U^3}{N}, \quad (21) \]

plotted with small triangles in Fig. 10b.

Both \(D_c\) and \(D_{cl}\) systematically underestimate the actual wave drag at \(\hat{h}_m = 1\) in Fig. 10. Nonetheless, \(D_{cl}\) reproduces the flat trend in \(D_w\) at \(\hat{h}_m > 2.5\) in Fig. 10b but with \(D_w/D_{cl} \approx 1.5\); an \(\alpha\) of 1.2 instead of 1 would make this ratio near unity, a choice that can be justified from Figs. 1, 3, and 10a. Here \(D_w/D_{cl}\) is larger in the range \(\hat{h}_m = 1.2–2\) with a peak near 2, demarcating this region as a “high wave-drag state.”

It is also useful to study how \(D_w\) might scale with \(D_p\) given that many OMD parameterizations quantify gravity wave fluxes by scaling surface drag. A reasonable \(D_p\)-scaled empirical fit to \(D_w\) at all \(\hat{h}_m\), shown as the solid gray curve in Fig. 10, is

\[D_w \approx D_{fit} = \begin{cases} D_p, & 0 \leq \hat{h}_m \leq 1 \\ D_p^* 0.9, & 1 < \hat{h}_m \leq 2.5 \\ (D_p^* \hat{h}_m^{-0.9})_{\hat{h}_m = 2.5}, & \hat{h}_m > 2.5. \end{cases} \quad (22) \]

4. Drag evolution for the elliptical obstacle

Figure 11 plots time evolution of the elliptical \((\beta = 3)\) obstacle drag as \(\hat{h}_m\) is increased from 0.1 to 1.5. Again, drag is normalized by the corresponding hydrostatic linear prediction \(D_L\) in (12), where \(B(3) \approx 0.9369\beta \approx 2.82\) (Phillips 1984). Thus, the linear drag in this case is enhanced over that of the axisymmetric obstacle by \(D_L(3)/D_L(1) = B(3)/B(1) \approx 3.6\).

At \(\beta = 3\) in Fig. 1 nonbreaking waves are predicted at \(0 < \hat{h}_m < \hat{h}_{ch} \approx 0.73\), followed by an extended wave breaking regime at \(\hat{h}_m > \hat{h}_{ch}\). Drag at \(\hat{h}_m = 0.1–0.5\) in Fig. 11 reveals pure wave responses, for which \(D_w \approx D_{fit} \approx D_{fit} \approx D_{fit}\), that generate no TKE. The \(\hat{h}_m = 0.7\) drag in Fig. 11d oscillates due to small vacillating levels of TKE (peaking at \(-0.01–0.05 \text{ m}^2 \text{ s}^{-2}\)) that form at unstable wave phases, consistent with the predicted wave breaking threshold of \(\hat{h}_{ch} \approx 0.73\) in Fig. 1. At \(\hat{h}_m = 0.85–1.5\), strong wave breaking dynamics are simulated, again consistent with Fig. 1. The surface drag \(\hat{D}_p\) at \(\hat{h}_m = 0.85–1.5\) undergoes large cyclical excursions with a period that decreases from \(-9 \text{ h}\) at \(\hat{h}_m = 0.85\) (Fig. 11e) to \(-6 \text{ h}\) at \(\hat{h}_m = 1.5\) (Fig. 11h).
Unlike the corresponding $\beta = 1$ results in Fig. 3, the diagnostic FT wave drag D_f does not reproduce D_w well at $h_m \approx 0.7$ in Fig. 11. Reasons why are highlighted in Fig. 12, which plots isentropes and TKE cross sections at 2-hourly intervals along the $y = 0$ axis for the $h_m = 0.85$ simulation. At hour 3 when D_f and D_w agree in Fig. 11e, nonlinearity in the form of overturning isentropes and large levels of TKE is confined below $z_i = 6$ km (where D_f and D_w are evaluated), consistent with the assumptions of the FT method (see section 2b). However, unlike the $\beta = 1$ cases (see Fig. 4), nonlinearity is not confined below 6 km at later times. For example, at hour 7 there is strong overturning and turbulent mixing at $z = 10$ km (Fig. 12c). At later times high-altitude wave activity is evident well downstream of the obstacle in Figs. 12d and 12e. The sources of these waves are near-surface wake dynamics (e.g., Dupont et al. 2001) and wave breaking regions at higher altitudes (e.g., Bacmeister and Schoeberl 1989; Satomura and Sato 1999; Tan and Eckermann 2000). The resulting waves are generally nonstationary, and some may propagate downward (Bacmeister and Schoeberl 1989) and, thus, are not properly characterized by the stationary upgoing gravity wave dispersion relation (6) that underpins the FT diagnostics.

Drag at the larger h_m values of 2–5 is plotted in Fig. 13. The vacillating wave breaking regime extends to at least $h_m = 3$, where the drag vacillation is now weak and its period has decreased to ~ 4 h (Fig. 13b). At still larger h_m, the pressure drag decreases more uniformly with time and wave drag settles to equilibrium values, similar to the behavior found for the $\beta = 1$ obstacle at similarly large h_m values in Fig. 6.

Given the large drag vacillations for the $\beta = 3$ obstacle, mean drag is computed over the last 12 h of each simulation, with resulting means and standard deviations plotted in Fig. 14. Mean drag in the range $0 < h_m \leq 0.5$ does not exhibit a noticeable linear increase with h_m as was found for the axisymmetric obstacle, but instead tracks the hydrostatic analytical value of $D_L = 1$ closely. This persists to $h_m = 0.7$ despite the vacillation in Fig. 11d and associated standard deviation in Fig. 14. At $h_m = 0.85$, a large abrupt increase occurs in both D_p and its standard deviation, owing to sudden onset of a vacillating high-drag wave breaking state. The high-drag D_p enhancements peak at $h_m \approx 1$. At larger h_m, mean D_p decreases monotonically as do the associated standard deviations. Wells et al. (2008) report a mean $D_p \approx 1.1$ at $h_m = 2$ in their Boussinesq simulations without Coriolis terms, somewhat larger than our mean value here of 0.83 ± 0.13.

Wave drag D_w, which tracks D_p and D_L at small h_m, drops abruptly below D_p at $h_m \approx 0.85$ as wave breaking and (at larger h_m) flow splitting cause progressively greater fractions of the surface pressure drag to manifest as near-surface dynamics rather than gravity waves. Despite the strongly nonlinear dynamics that yield a generally nonstationary nonlinear wave field at $z_i = 6$ km
(Fig. 12), the unnormalized areally averaged momentum flux D_w is fitted fairly well throughout the extended nonlinear range $h_m = 0.85$ in Fig. 14b by the simple clipped obstacle prediction D_{c1} in (21). For example, mean D_w values at $h_m = 0.85$ only are only $\sim 10\%$–20% larger than D_{c1}. At $h_m = 0.85$, D_w exceeds D_{c1} by more than this factor, consistent with this range of h_m being a high-drag wave breaking state.

Fig. 12. Isentropes as a function of x and z (contour interval 1 K) along the central obstacle axis ($y = 0$) at hours 3, 5, 7, 9, and 11 for $h_m = 0.85$ and $\beta = 3$. Color shading shows areas of turbulent kinetic energy (m2 s$^{-2}$, see color bar). Gray line depicts $z_i = 6$ km where gravity wave momentum fluxes are computed.

Fig. 13. Nondimensional drag as a function of time for the $\beta = 3$ obstacle for normalized obstacle heights h_m ranging from (a) 2.0 to (d) 5.0: curve definitions as given in Fig. 11a.
FIG. 14. (a) Nondimensional and (b) absolute mean drag ($t = 12–24$ h and standard deviations (gray error bars) vs \hat{h}_m for $\beta = 3$ WRF simulations. Dotted gray line at $\hat{h}_m = 0.7$ demarks responses with and without TKE at larger and smaller \hat{h}_m, respectively. The various drag terms are labeled top right of (a). See text for symbol definitions.

5. Discussion

Figure 15 compares the mean normalized surface-pressure and far-field wave drags for the $\beta = 1$ and $\beta = 3$ obstacles as a function of \hat{h}_m. While $\hat{D}_w = \hat{D}_p$ for both obstacles in the mutual “linear” (non-TKE) range $\hat{h}_m \sim 0.1–0.7$, the \hat{D}_w curve for the axisymmetric obstacle increases linearly with \hat{h}_m in this range to values progressively larger than unity, whereas the \hat{D}_w curve for the elliptical $\beta = 3$ obstacle stays close to the hydrostatic linear prediction of $\hat{D}_L = 1$.

In the high-drag region of $\hat{h}_m \sim 1–2$, mean \hat{D}_p values for the $\beta = 3$ obstacle peak at a smaller \hat{h}_m and attain larger values than for the axisymmetric obstacle, and individual values exhibit a much larger variation with time (standard deviation). This is broadly consistent both with Fig. 1 and the more intense wave breaking (relative to axisymmetric obstacles) expected for elliptical obstacles (1) whose long axis b is aligned perpendicular to the flow, due to less dispersion of wave activity, that leads to more concentrated and unstable wave fields. The smaller D_w values at $z = 6$ km for the $\beta = 3$ compared to $\beta = 1$ obstacle are consistent with greater near-surface dissipation of waves by overturning and TKE in the $\beta = 3$ simulations (cf. Figs. 4 and 12).

In the nominal flow-splitting regime of $\hat{h}_m \geq 2$, \hat{D}_p values in Fig. 15 are almost identical for both obstacles. Using a different obstacle shape, Bauer et al. (2000) also found very similar \hat{D}_p values at large \hat{h}_m for $\beta = 1–4$. Some analytical models of flow-blocking drag predict $\hat{D}_p \propto \hat{h}_m^{-1}$ at large \hat{h}_m (Lott and Miller 1997; Scinocca and McFarlane 2000), while others suggest $\hat{D}_p \propto \hat{D}_L \sim 1$ owing to surface drag enhancements from rotation and friction (Webster et al. 2003). Our common D_p curve is well fit as $\hat{h}_m^{-0.7}$ at $\hat{h}_m = 2–5$. Stein (1992) reported a \hat{D}_p fit $\propto \hat{h}_m^{-0.1}$ in this range based on two-dimensional simulations.

Absolute wave drag D_w at $\hat{h}_m \sim 2.5–5$ was almost constant for both $\beta = 1$ and $\beta = 3$ obstacles and was predicted reasonably accurately by scaling the saturated linear wave drag D_{L1} given by (21) (see Figs. 10b and 14b). It is remarkable that D_w values are all so similar in this range, given the large variation in local wave momentum-flux morphology as a function of \hat{h}_m in Fig. 8 and nonstationary transient waves from surface wake and TKE sources for the $\beta = 3$ obstacle in Fig. 12. While this $D_w \sim D_{L1}$ finding may prove to be very convenient for parameterizing orographic gravity wave momentum fluxes in this range, it must be recognized that the simple theoretical arguments that yield D_{L1} (see the appendix) are inconsistent with the WRF-simulated wave fields. As explicitly demonstrated by Lindeman et al. (2008), the effective obstacle forcing for these waves does not resemble the clipped obstacle forcing underpinning D_{L1}. It is, instead, dominated by obstacle-like forcing produced by the leeside fluid dynamical response, specifically the sharp descent and ascent of isentropes along the obstacle downslope (see Fig. 7), which yield highly concentrated wave momentum flux in Fig. 8 above the obstacle downslope rather than near the peak. In short, (21) gives an approximately correct answer but for demonstrably wrong reasons. Why D_{L1} is a reasonable fit to modeled wave fluxes in this nonlinear range is not yet clear, but this need not be a barrier to using it in parameterizations. For example, parameterizations based the saturated gravity wave spectra observed in the middle atmosphere are now common in models, despite the lack of an accepted theory for how these spectra are formed (McLandress and Scinocca 2005).

Indeed, several OMD parameterizations already use relations akin to D_{L1} to assign wave momentum fluxes in
Some previous simulations have suggested that a large fraction of the total pressure drag. Our gating far-field gravity waves remain a significant (used Fr inverse Froude number Fr but, given a lack of theoretical results also show that, even at large h_m ~ 2–5, propagating far-field gravity waves remain a significant (>20%) fraction of the total pressure drag. Our h_m = 2, β = 3 value of 0.43 ± 0.10 at z_i = 6 km in Fig. 16b compares reasonably to a corresponding value of ~0.52 evaluated by Wells et al. (2008) at ~100 m above their obstacle peak. The slightly smaller mean value here is consistent with some additional near-field turbulent dissipation of waves in propagating to z_i = 6 km.

FIG. 15. (a) Nondimensional mean surface pressure drag and wave drag vs h_m for the β = 1 (solid) and β = 3 (dotted) obstacles.

This is illustrated further in Fig. 16, which plots D_w/D_p as a function of h_m for both β = 1 and β = 3 obstacles. Some previous simulations have suggested that D_w/D_p rapidly decreases at h_m ~ Fr_c^{-1} and essentially vanishes at large h_m (Miranda and James 1992; Wells et al. 2005). While D_w/D_p certainly drops suddenly below unity at h_m ~ Fr_c^{-1} in Fig. 16, especially for the β = 3 obstacle, our results also show that, even at large h_m ~ 2–5, propagating far-field gravity waves remain a significant (>20%) fraction of the total pressure drag. Our h_m = 2, β = 3 value of 0.43 ± 0.10 at z_i = 6 km in Fig. 16b compares reasonably to a corresponding value of ~0.52 evaluated by Wells et al. (2008) at ~100 m above their obstacle peak. The slightly smaller mean value here is consistent with some additional near-field turbulent dissipation of waves in propagating to z_i = 6 km.

Between these asymptotic wave-flux limits of D_w = D_L at h_m << 1 and D_w ~ D_c1 at h_m >> 1, Figs. 10b and 14b also show an intermediate zone at h_m ~ 1–2.5 where D_w attains maximum mean values and can vacillate. By analogy to surface drag, we refer to this region as a high-wave-drag state. However, unlike surface drag, D_w does not exceed D_L in this high-drag range but, instead, exceeds the saturated wave-drag D_c1 or, more accurately, exceeds the limiting D_w at h_m >> 1. These wave-drag enhancements are fairly small for the β = 3 obstacle (presumably because of greater low-level dissipation due to wave breaking) but are on the order of 50% for the axisymmetric obstacle in Fig. 10b.

For OMD parameterization, our isolation of the far-field gravity wave component D_w of the total surface drag D_p in turn defines the component D_b = D_p – D_w that is confined and deposited below z_i = 6 km. Figure 17 plots its variation with h_m in both normalized and absolute form for both β = 1 and β = 3 obstacles. While D_b is usually referred to as flow-blocking drag in OMD parameterizations, here it likely includes other effects, such as flux deposition due to low-level wave breaking.

Since this study is a first methodical attempt to characterize far-field gravity wave components of the drag...
from three-dimensional obstacles at a range of nonlinear \(h_m \) values, we employed a number of simplifications to make wave characterization easier. One potentially important omission was the Coriolis force \((f = 0)\). Ölafsson and Bougeault (1997) compared surface drag in \(f = 0 \) and \(f \neq 0 \) simulations and found larger \(D_p \) values at large \(h_m \) for \(f \neq 0 \). They used \(a = 40 \) km rather than the 10 km used here. Wells et al. (2008) argued that the primary effect of nonzero \(f \) at obstacle widths \(O(10 \) km) was to introduce asymmetries to the flow, which trigger vortex shedding that yields larger \(D_p \) values (e.g., Vosper 2000). For example, Wells et al. (2008) found similar \(D_p \) between \(f \neq 0 \) simulations and \(f = 0 \) simulations in which asymmetry was introduced artificially with a potential temperature perturbation (Schär and Durran 1997). We included neither rotation nor potential temperature perturbations in these runs to keep our study of wave momentum fluxes as simple as possible. As a result, our drag values may be underestimated at large \(h_m \). That having been said, our nonlinear simulations yield asymmetric lee vortex evolution after \(\sim 18 \) h.

For the \(\beta = 3 \) obstacle, an additional question for OMD parameterization is how wave momentum fluxes at \(h_m \ldotp Fr^{-1} \) vary as the angle \(\varphi \) between the incident flow vector and the short axis of the obstacle changes from our value of \(\varphi = 0^\circ \). While unable to predict mean magnitudes, Wells et al. (2008) found that the linear drag relations of Phillips (1984) provided a good fit to how surface pressure drag varied as a function of \(\varphi \) for a \(\beta = 3 \) obstacle at \(h_m = 2 \). They also found a strong \(D_w/D_p \) variation with \(\varphi \), from \(\sim 0.5 \) at \(\varphi = 0^\circ \) to values \(\sim 0.9 \) at \(\varphi \) near \(\pm 90^\circ \). Since the latter \(\varphi \) values are equivalent to changing from \(\beta = 3 \) to a \(\beta = 1/3 \) obstacle, Fig. 1 predicts for \(h_m = 2 \) and \(\beta = 1/3 \) that the flow is near the threshold between linear wave and flow-splitting dynamics, for which \(D_w/D_p \sim 1 \) would be expected based on the current results.

Other omitted processes may also be important in setting gravity wave momentum fluxes. For example, using a no-slip lower boundary condition, Ölafsson and Bougeault (1997) found surface drag reductions at \(h_m \sim 1–3 \) and enhancements at larger \(h_m \), relative to corresponding free-slip results, although subsequent simulations suggest smaller frictional modifications at large \(h_m \) (Wells et al. 2005). From our OMD parameterization perspective, we can justify the omission of surface friction here by noting that it is parameterized separately in global models with orographic roughness, land surface, and planetary boundary layer parameterizations. Thus, frictional modifications to parameterized OMD would ideally involve inputs from those schemes that modify a frictionless baseline OMD parameterization. In practice, however, current OMD parameterizations in models are not modified by frictional inputs. As a result, the model-tuned values of \(Fr^{-1} \sim 0.25 – 0.375 \) used in some OMD parameterizations, which significantly underestimate the gravity wave momentum fluxes reported here, may parameterize the mean overall effect of friction and other omitted processes in reducing far-field wave fluxes. Thus, future investigations of the influence of friction, \(\varphi \), and other omitted processes on wave momentum fluxes at nonlinear Froude numbers would clearly be worthwhile.

6. Summary

Using WRF model simulations, we studied mesoscale dynamics resulting from a steady unsheared flow impinging upon an idealized obstacle (1) of along-stream width \(a = 10 \) km and cross-stream width \(b = \beta a \). We focused on an axisymmetric \((\beta = 1)\) and elliptical \((\beta = 3)\) obstacle, and for each performed experiments in which the normalized obstacle height \(h_m = Fr^{-1} \) was
progressively increased from the linear regime ($\hat{h}_m \ll 1$) through to the highly nonlinear regime ($\hat{h}_m \gg 1$), as shown in Fig. 1. The primary foci of our analysis were the local and areally integrated momentum fluxes of the far-field equilibrium gravity wave fields that propagated to a height of 6 km. Those fluxes were quantified both directly from the WRF velocity anomalies and indirectly using diagnostic Fourier-transform methods. We sought mean results that could be used to specify gravity wave momentum fluxes in subgrid-scale orographic mesoscale drag (OMD) parameterizations in global weather and climate models. Our major findings are summarized schematically in Fig. 18.

Since many OMD parameterizations assign wave momentum fluxes by scaling surface pressure drag, Fig. 18a first summarizes the bulk properties of (normalized) pressure drag as a function of \hat{h}_m. At $\hat{h}_m < Fr_{c1}^{-1}$ pressure drag is close to linear hydrostatic predictions ($\tilde{D}_p \sim 1$) and translates fully into propagating gravity wave momentum flux at 6 km. At $Fr_{c1}^{-1} < \hat{h}_m \leq 2$ high-drag wave breaking states ($\tilde{D}_p > 1$) occur, with the Fr_{c1}^{-1} threshold predicted to within $\pm 10\%$ for both $\beta = 1$ and $\beta = 3$ obstacles using the Smith (1989b) curves in Fig. 1. Surface drag for the $\beta = 3$ obstacle vacillates in the $\hat{h}_m \sim 0.7$–3 range due to cyclic buildup and breakdown of wave activity, with the period and amplitude of these vacillations decreasing with increasing \hat{h}_m. Periodic drag vacillation occurred for the axisymmetric obstacle only at $\hat{h}_m = 1.2$. At $\hat{h}_m \approx 2$–3 pressure drag decreased smoothly with time to normalized equilibrium values that were almost identical for both obstacles and were well fitted as $\hat{h}_m^\wedge_{1.3}$.

Mean features in the areally integrated wave momentum fluxes, or “wave drag,” at $z_r = 6$ km are summarized in absolute (unnormalized) form in Fig. 18b. In the linear $\hat{h}_m < Fr_{c1}^{-1}$ range, wave drag D_w matches both D_p and D_L and thus varies according to the latter’s analytical h_m^{-2} dependence in (13). While at $\hat{h}_m \approx Fr_{c1}^{-1} D_w$ suddenly becomes a significantly smaller fraction of the total pressure drag (see Fig. 16), absolute values peak in the high-drag range $Fr_{c1}^{-1} < \hat{h}_m \leq 2$. As with pressure drag, wave vacillations in this range owing to periodic buildup and breakdown of wave amplitudes just above the obstacle (see Fig. 4).

At $\hat{h}_m \approx 2$–3 wave drag levels off to a constant value, which is quantified to within 10%–40% by a “saturated” clipped wave drag D_{c1} given by the analytical relation (21) using $\alpha = Fr_{c1}^{-1} \approx 1$. Stable invariant wave drag in this high \hat{h}_m range is a surprising finding, given that the three-dimensional distribution of wave momentum flux varies appreciably with \hat{h}_m over this range (see Fig. 8) and can be additionally impacted by nonstationary wave responses in the elliptical obstacle simulations (see Fig. 12).

We show that the analytical relation D_{c1} arises here from a demonstrably incorrect model of the $\hat{h}_m \approx Fr_{c1}^{-1}$ wave field. Nonetheless, based on the agreement in Fig. 18b, it offers a simple and convenient way of accurately quantifying wave flux in this nonlinear \hat{h}_m range. Mean wave-drag curves like those in Fig. 18b can easily be incorporated into existing OMD parameterizations, given their close current associations with the mean drag properties of idealized three-dimensional obstacles (see, e.g., Scinocca and McFarlane 2000).

Indeed, some current OMD parameterizations already use analogs of $D_w \sim D_{c1}$ to assign wave momentum fluxes at nonlinear Freude numbers. While we found best agreement using $Fr_{c1}^{-1} = 1$–1.2, the values of Fr_{c1}^{-1} ($\approx Fr_{c1}^{-1}$) used in OMD parameterizations that have been “tuned” to optimize model skill are currently ~ 0.25–0.375, which, based on our results, imply order-of-magnitude underestimates of parameterized orographic gravity wave momentum fluxes at $\hat{h}_m > Fr_{c1}^{-1}$ in such models. However, our model simulations do not include additional effects such as surface friction and rotation, which may reduce wave
fluxes. Our results also show large vacillations in both surface and wave drag, particularly in the range $Fr^{-1} < \hat{h}_m \leq 2-3$, which existing schemes do not include but could, for example, via an explicitly stochastic parameterization of OMD (see, e.g., Palmer 2001).

Acknowledgments. This research was supported by the Office of Naval Research’s base 6.1 research program at the Naval Research Laboratory, by NASA GMAP Contract NNTG06HM19I, and by the National Science Foundation through Grants ATM-0435789 (DB) and ATM-0448888 (JL).

APPENDIX

Analytical Wave Drag Relations Based on the Dividing Streamline Concept

We consider waves forced by flow over a clipped obstacle $h_c(x, y)$ located between the dividing streamline z_{ds} and the obstacle peak h_m (Lindeman et al. 2008). The simplest derivation assumes the same shape as the unclipped obstacle, same widths a and b, but reduced height $(h_c)_m = h_m - z_{ds}$ given by (20). Assuming the linear hydrostatic solution D_L holds at $0 \leq \hat{h}_m \leq \alpha$, then at $\hat{h}_m > \alpha$ the wave drag is

$$D_{c1} = D_L \left(\frac{(h_c)_m}{h_m} \right)^2 = D_L \alpha^2 \hat{h}_m^{-3} = B(\beta) \alpha U_0 \frac{\alpha^3 U^3}{N}. \quad (A1)$$

In reality the clipped mountain peak is narrower and generates much shorter scale waves (Ding et al. 2003; Lindeman et al. 2008). A better approximation then might be to assume that the effective half widths a_e and b_c of the clipped obstacle $h_c(x, y)$ reduce linearly with the clipping height so that the obstacle’s height-to-width ratio remains constant. Ignoring possible nonhydrostatic effects as a_e and b_c contract, this yields a clipped wave drag

$$D_{c2} = D_L \alpha^3 \hat{h}_m^{-3}. \quad (A2)$$

In fact, neither approximation fits the actual solution D_c from the Fourier-ray calculation (large triangles in Fig. 10), which is most closely fitted at $\hat{h}_m > \alpha$ as $D_L \hat{h}_m^{-2.5}$, essentially halfway between approximations (A1) and (A2).

REFERENCES

