A Diagnostic Equation for Tendency of Lapse-Rate-Tropopause Heights and Its Application

MASASHI KOHMA AND KAORU SATO

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

(Manuscript received 5 March 2019, in final form 9 August 2019)

ABSTRACT

The tropopause is the boundary between the troposphere and stratosphere and is normally defined by the temperature lapse rate. Previous studies have noted that synoptic-scale and planetary-scale disturbances bring about lapse-rate-tropopause (LRT) height fluctuations on time scales from several days to several years. In the present study, a diagnostic expression for the tendency of LRT height is derived by assuming that the LRT can be characterized as a discontinuity in the vertical gradient of the potential temperature. In addition, the contribution from each term in the thermodynamic equation to the LRT height is quantified. The derived equation is validated by examining the time variation of the LRT height associated with baroclinic waves in an idealized numerical calculation, that of the zonal-mean LRT height in GPS radio occultation data, and that of the LRT height in reanalysis data.

1. Introduction

The tropopause is the boundary between the troposphere and stratosphere. The conventional definition of the tropopause is based on the temperature lapse rate; “the lowest level at which the lapse rate decreases to 2 K km$^{-1}$ or less, provided that the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K km$^{-1}$” (WMO 1957). The tropopause as determined under this definition is hereinafter called the lapse-rate tropopause (LRT). Across the tropopause, rapid changes in the potential vorticity (PV) and the concentrations of ozone, water vapor, and other chemical tracers are observed (e.g., Bethan et al. 1996; Hegglin et al. 2009). Previous studies (e.g., Birner et al. 2002; Birner 2006) showed that the changes across the tropopause averaged in the vertical coordinate relative to the local LRT height is sharper than those averaged in the coordinate relative to the ground level. Based on the sharp gradient for these quantities across the LRT, other definitions for the tropopause have also been suggested (e.g., PV-based tropopause, which is also known as dynamical tropopause; Hoskins et al. 1985). Nevertheless, the LRT is the most commonly used definition because it can be determined from a single vertical temperature profile. Another thermal tropopause definition is the cold-point tropopause (CPT), which is defined as the altitude where the temperature is minimized in the vertical direction. The CPT is frequently used for studies on water vapor transport associated with tropical upwelling. Pan et al. (2018) examined trace gas measurements in the tropical tropopause region and showed that the LRT is related to a sharper transition level of the species from the troposphere to the stratosphere than the CPT.

The question of what determines the tropopause height has been investigated in previous studies. Held (1982) proposed a constraint relating the tropopause height with the tropospheric stratification under the assumptions that the time-mean and zonal-mean stratification in the troposphere is constant and that the thermal structure in the stratosphere is determined by radiative equilibrium. Furthermore, in order to address this problem, he introduced additional constraints concerning dynamical entropy transport in the troposphere. Although Held’s approach is highly simplified, it provides a reasonable estimate of the tropopause height (100–200 hPa in the tropics and ∼400 hPa in the extratropics). This tropopause determination is based on the concept that the tropopause may be regarded as the top...
of the boundary layer in which the heat received at the
surface is redistributed by the air motion (Schneider 2004;
Zurita-Gotor and Vallis 2013). Many subsequent studies
have investigated the roles of processes that were not
considered by Held (1982) in determining the time-mean
tropopause height. These processes include moisture ef-
fects (Thuburn and Craig 1997; Frierson et al. 2006), active
roles of the stratosphere such as the meridional circulation
and the shortwave heating due to ozone (Thuburn and
Craig 2000), and sharp vertical gradients in longwave
cooling due to water vapor (Hartmann et al. 2001; Randel
et al. 2010a; Thompson et al. 2017).

While Held’s approach considers the time-mean
(equilibrium) state of the tropopause, there is also a
temporal variability of the tropopause height associated
with a variety of atmospheric processes with a wide
range of time scales. For example, the (anti) cyclonic PV
anomaly around the tropopause lowers (raises) LRT
heights (Hoskins et al. 1985; Wirth 2000; Tomikawa
et al. 2006), the activity of the storm track is connected
to the zonal-mean LRT height (Son et al. 2007), and the
day-to-day variation of the local tropopause level is
correlated with that of the total ozone column
(Steinbrecht et al. 1998). Several studies have suggested
that the variability of the overturning meridional circu-
lration in the stratosphere has an impact on the monthly
mean zonal-mean LRT height (e.g., Yulaeva et al. 1994;
Grise et al. 2010; Li and Thompson 2013; Kohma and
Sato 2014; Barroso and Zurita-Gotor 2016). Interannual
variability including the stratospheric equatorial quasi-
biennial oscillation has an impact on the tropical tropo-
pause heights (Randel et al. 2000; Grise et al. 2010).

Several previous studies have tried to quantify the time
variation of tropopause heights. Son et al. (2007) examined
the heat budget around the tropopause in the extratropics
on intraseasonal time scales. They pointed out the impor-
tance of the lower-stratospheric temperature anomalies for
the LRT height fluctuations, based on composite analyses.
Barroso and Zurita-Gotor (2016) decomposed the intra-
seasonal variability of zonal-mean tropopause heights into
low- and high-frequency components using principle com-
ponent analysis and discussed the relation of the variability
to wave breaking and the strength of the polar vortex.

Although the time variation of the tropopause heights
on various time scales has been examined, few previous
have studies considered an expression for the tropopause
height explicitly. Johnson (1986) presented a simplified
expression for the tropical tropopause as an infinitesimal
transition layer of dry static energy s:

$$\frac{\partial z_T}{\partial t} = \frac{w}{\bar{S}_{z_T}} \left[z_T - \frac{F_{RT}}{\bar{S}_{z_T} \rho} \right],$$ \hspace{1cm} (1)$$

where z_T, w, $\bar{w} S_{z_T} / z_T$, F_{RT}, and ρ are the tropopause
height, vertical velocity, heat flux at the bottom of the
transition layer, radiative heating rate, and density, re-
drespectively. The square brackets $[\cdot]_{z_T}$ indicate a jump
across the transition layer. The overbar refers to the area
average. Johnson (1986) derived Eq. (1) from an anal-
ogy with an equation for the depth of the convective
boundary layer, which is derived under the assumption
that there is a jump in the virtual potential temperature
at the top of the boundary layer (e.g., Lilly 1968; Zeman
and Tennekes 1977). The validity of Eq. (1) is not dis-
cussed in detail for the real atmosphere in Johnson
(1986), however.

In the present study, we simplify the tropopause to a
discontinuity in the vertical gradient of the potential
temperature, which is a traditionally used assumption in
previous studies on tropopause dynamics (e.g., Juckes
1994, 1997), and derive a diagnostic relation for the
tendency in the tropopause height. This type of pro-
cedure is used for analyses of nonlinear waves, for ex-
ample, when calculating the propagation speed of shock
waves (Tanaka 2017). We applied the derived relation to
model simulation, observational data, and reanalysis
data in order to evaluate the accuracy of the derived
equation. It is known that the tropopause height is af-
ected by various physical processes (e.g., Randel and
Jensen 2013). The equation proposed in the present
study has a potential to quantify which physical pro-
cesses are important for the seasonal and long-term
changes in the tropopause heights. For example, it is
possible to quantitatively answer questions such as
whether the cause of the decrease in the polar tropo-
pause height during sudden stratospheric warming
(e.g., Kohma and Sato 2014) can be explained by the
enhancement of the downward residual mean flow in
the polar region, or what causes the intermodel vari-
bility in the trend and interannual variability of the
tropopause height (Gettelman et al. 2010; Hegglom
et al. 2010).

Note that recent observational studies have revealed
that a thin but finite-depth unique vertical structure is
observed around the tropopause in both the tropics and
extratropics, which are known as the tropical tropopause
layer (TTL) and extratropical transition layer (ExTL), re-
spectively (Fueglistaler et al. 2009b; Gettelman et al.
2011). Birner et al. (2002) considered the climatological
features in the inversion layer just above the tropopause
(TIL) in the extratropics. The findings of these studies
suggest that the tropopause is characterized as a finite-
depth layer rather than as a boundary at a specific
height. In this context, the present tropopause model
may be an oversimplification. It is shown later that,
nevertheless, the derived equation explains much of the
variance in the LRT heights tendency in the observational and model data under certain conditions.

This study is organized as follows. The derivation of diagnostic expression for the tendency of tropopause height is given in section 2. The applications of the derived equation to simple baroclinic instability in a numerical experiment, GPS radio occultation (GPS RO) observation data, and reanalysis data are presented in sections 3, 4, and 5, respectively. The summary and concluding remarks are given in section 6.

2. Derivation of tendency equation for LRT heights

To derive the tendency equation for the LRT height \(z_T(x, y, t) \), a simplified representation of the tropopause as a discontinuity in the vertical gradient of potential temperature is used. Specifically, we make two assumptions for the tropopause: (i) potential temperature \(\theta(x, y, z, t) \) is continuous in the vertical direction and smooth except at an altitude of \(z_T \) and (ii) \(\theta_z(x, y, z, t) \) is continuous and smooth except at altitude \(z_T \) and has a discontinuity at \(z_T \), where the suffix \(z \) denotes the partial derivative in \(z \). The validity of the posed assumptions will be discussed in section 2a. Figure 1 shows a schematic of the simplified vertical structures of \(\theta \) and \(\theta_z \) around the tropopause. This kind of simplification is known as shock fitting. Thus, the following relations hold around \(z_T \):\

\[
\theta[x, y, z_T(x, y, t) + 0, t] - \theta[x, y, z_T(x, y, t) - 0, t] = 0, \tag{2}
\]

\[
\theta_z[x, y, z_T(x, y, t) + 0, t] - \theta_z[x, y, z_T(x, y, t) - 0, t] = S(>0), \tag{3}
\]

where \(f(z_T + 0) = \lim f(z) \) and \(f(z_T - 0) = \lim f(z) \). Note that \(S \) is known as the sharpness of the tropopause (e.g., Bethan et al. 1996; Zängl and Hoinka 2001). The Euler derivative of Eq. (2) gives\

\[
\theta[x, y, z_T(x, y, t) + 0, t] + \frac{\partial z_T}{\partial t} \theta_z[x, y, z_T(x, y, t) + 0, t] - \theta[x, y, z_T(x, y, t) - 0, t] - \frac{\partial z_T}{\partial t} \theta_z[x, y, z_T(x, y, t) - 0, t] = 0,
\]

which for \(f \) given by Eq. (1) can be simplified to\

\[
\frac{\partial z_T}{\partial t} = \frac{\partial z_T}{\partial t} S,
\]

\[
\lim_{S \to 0} \frac{\partial z_T}{\partial t} = \frac{\partial z_T}{\partial t} S, \tag{4}
\]

The right-hand side of Eq. (4) is expressed as the difference between the Euler derivative of the potential temperature across the tropopause \([\theta]_{T}^{St} \) and sharpness \(S \). This relation corresponds to the Hugoniot–Duhem theorem for a first-order discontinuity. Another but equivalent derivation of Eq. (4) using Leibniz’s integral rule is also provided in the appendix.

It should be noted that the WMO’s definition of the LRT is based on a specific value of the lapse rate (2 K km\(^{-1}\)) although the tropopause in the present study is defined as a discontinuity of the lapse rate. Thus, strictly speaking, the tendency of LRT heights in the present study is not the same as those based on the WMO’s definition. Nevertheless, observational studies (e.g., Birner et al. 2002) have also considered the climatological features for a sharp change of the vertical gradient of \(\theta \) across the LRT except in the polar winter region. This point is discussed in more detail in section 2a.

The right-hand side of Eq. (4) is rewritten using the thermodynamics equation \(\theta_z = Q - \mathbf{v} \cdot \nabla \theta \), where \(Q \) is the diabatic heating rate for \(\theta \), and the thermal diffusion is neglected:

\[
\frac{\partial z_T}{\partial t} = \frac{[Q - (\mathbf{v} \cdot \nabla \theta)]_{T}^{St}}{S}. \tag{5}
\]

Here, Eq. (5) is a more general form of Eq. (1), based on a discontinuity in \(\theta_z \). It should also be emphasized that the tendency of \(z_T \) due to adiabatic/diabatic processes can be evaluated separately using Eq. (5). Specifically, the first term associated with \(Q \) on the right-hand side of Eq. (5) corresponds to the contribution from diabatic processes while the second term expresses...
that from adiabatic (i.e., advective) processes. Because both terms are divided by S, large values of S lead to a decrease in the absolute value of the change in the LRT height. Note that the LRT heights have to be provided to calculate the tendency using Eq. (4) and/or Eq. (5) since the operation $\frac{\partial z_T}{\partial t}$ includes the LRT heights.

It should be noted that Eq. (4) is a kinematic relation; namely, there is no need to specify the governing equations including spatial coordinates in the derivation of Eq. (4). Thus, the tendency equation for temporal-mean and/or spatial-mean z_T can be obtained in the same manner as long as the two assumptions [Eqs. (2) and (3)] are satisfied. For example, using the transformed-Eulerian-mean equation system (TEM system; Andrews et al. 1987), the tendency equation for the LRT height in the TEM system is derived as follows:

$$\frac{\partial \bar{z}_T}{\partial t} = -\frac{[\bar{\theta}]_{Tr}}{S}, \quad \text{(6)}$$

where the overbar indicates the zonal mean. Note that the zonal mean will smooth sharp changes of θ_z (Birner 2006), and thus the assumption of discontinuities in θ_z should be validated carefully.

Furthermore, by combining with the thermodynamic equation in the TEM system, Eq. (6) can be rewritten as follows if the diffusion effect is neglected:

$$\frac{\partial \bar{z}_T}{\partial t} = -\left[\bar{\theta} - \bar{\theta}_0 \frac{\partial G/\partial z}{S} \right]_{Tr}, \quad \text{(7)}$$

where $\bar{\theta} = (0, \bar{\psi}, \bar{w})$ is the residual mean velocity vector and $G = \rho_0 (\bar{\psi} \bar{\psi} \bar{\theta}_z + \bar{w} \bar{\theta}_z \bar{\theta}_z) / \bar{\theta}_z$, which becomes zero for linear, adiabatic, steady disturbances or the quasigeostrophic limit. The primes denote the perturbations from the zonal mean. This equation corresponds to the TEM version of Eq. (5).

Before proceeding to the application of the derived equations to atmospheric data, we discuss briefly the assumptions used in the derivation and their applicability.

a. On assumptions in use

For deriving the master relation of the tendency of LRT heights [Eq. (4)], we make the following two assumptions [Eqs. (2) and (3)]: θ is continuous, and there is a discontinuity in θ_z at the tropopause level. The former seems to be a valid assumption for the real atmosphere [Fig. 3 in Gettelman et al. (2011)]. For the assumption on θ_z, rapid changes across the tropopause are commonly observed (Schmidt et al. 2005; Grise et al. 2010; Son et al. 2011) except in the polar winter region. Previous studies have investigated the sharpness of the tropopause in terms of the contrast of θ_z between above and below tropopause. In the polar winter, the contrast across the tropopause is weak (Zängl and Hoinksk 2001).

When the sharpness approaches zero, the right-hand side of Eq. (4) becomes zero. The LRT is frequently undetectable in the Antarctic winter for the same reason (e.g., Pan and Munchak 2011). Thus, the application of Eq. (4) or Eq. (5) is not meaningful for the polar winter region.

In the derivation of the relation for the tendency of the LRT height, it is implicitly assumed that the vertical profile has a single discontinuity in θ_z. Accordingly, the presence of multiple discontinuities, corresponding to multiple tropopause structures, is neglected in the present configuration. As a result, it may be problematic to apply the derived equation when multiple tropopauses are present, for example, during tropopause folding events at the midlatitudes (e.g., Keyser and Shapiro 1986; Danielsen et al. 1991), tropopause breaks around the subtropical jet (Randel et al. 2007b), and strong temperature fluctuations associated with intense inertia–gravity waves in the polar winter (Shibuya et al. 2015). The applicability of the derived relation to multiple tropopauses will be shown briefly in section 5.

b. Applicability to observational and model data

To assess the accuracy of the right-hand side of Eqs. (4)–(7), datasets with a very high vertical resolution are desirable since the operation $\left[\frac{\partial \bar{\theta}}{\partial t} \right]_{Tr}$ is defined as the difference across the infinitesimal transition layer. It is not always possible to make use of high-vertical-resolution data. For practical applications, we have to approximate the operation as a finite difference across the tropopause:

$$\left[f \right]_{Tr} \approx \left[f \right]_{z_0} = f(z_1) - f(z_0), \quad \text{(8)}$$

where $z_0 < z_T < z_1$.

Note that variations in θ or θ_z with vertical wavelengths shorter than a distance between z_0 and z_1 may cast doubt on the validity of the approximation. The validity of the approximation should be confirmed by comparing the left-hand side of Eq. (4) to an approximation of the right-hand side (i.e., $\delta z_T / \delta t \approx -\left[\theta_z \right]_{Tr} / S$). If the equality holds, then this is an indicator of not only the validity of the finite-difference approximation, but also that of the simplification of the tropopause as a discontinuity in θ_z.

3. Application to baroclinic instability in a simplified model

First, we applied the derived relation to the results of a numerical experiment for baroclinic instability in dry, adiabatic atmosphere introduced by Polvani et al. (2004).
a. Numerical model and experiment setup

The Dennou-Club Planetary Atmospheric Model, version 5 (DCPAM5; Takahashi et al. 2018), is used for numerical calculation of baroclinic instability in a dry, adiabatic atmosphere in spherical coordinates. DCPAM5 is an atmospheric general circulation model, whose dynamical core is a hydrostatic spherical spectral model. In the experiment, a horizontally triangularly truncated spectral resolution of T85 is used. The vertical coordinate is comprised of 40 σ levels.

The experiment setup follows Polvani et al. (2004). The basic flow is given as a zonally symmetric zonal flow. Figure 2 shows latitude–pressure sections of the basic zonal flow and potential temperature, which is balanced with the zonal flow through the thermal wind relation. The black broken curve indicates z_T for the basic state. The values of z_T are obtained by applying the method of Reichler et al. (2003), which is developed for deriving the tropopause height from relatively coarse-resolution temperature data using interpolation of lapse rates. The obtained LRT height is hereinafter referred to as the observed z_T. Although z_T in the tropics (~ 200 hPa) is quite low compared to the real atmosphere, it is observed that the tropical z_T is higher than that in the extratropics. To induce the development of baroclinic eddies, a small temperature perturbation is added around 45°N. Polvani et al. (2004) showed that eddies similar to LC1 (Thorncroft et al. 1993) develop in this experiment setup. Diffusion terms are included in the momentum and thermodynamic equations to avoid developing sharp fronts in a short time period (Polvani et al. 2004). The numerical integration is performed over 12 days and the results for day 12 are shown below. The temporal tendency of tropopause height is calculated from the forward difference in z_T at 0000 UTC on day 12 divided by 1 h.

b. Results

Figure 3a shows a horizontal map of z_T (color) on day 12 together with the relative vorticity at 250 hPa (contours). It is observed that negative and positive z_T anomalies from the background correspond to cyclonic and anticyclonic relative vorticity anomalies, respectively. The balanced relation between tropopause heights and potential vorticity anomalies around the tropopause has already been discussed in many previous studies (e.g., Hoskins et al. 1985; Wirth 2000). Note that the signature of double tropopause is not found within the present integration time period. Figure 3b shows the tendency of the LRT height ($\partial z_T/\partial t$). The peak-to-peak amplitude is about 1.1 km day$^{-1}$ at most.

To apply the tendency equation for LRT heights, it is necessary to specify the two levels which sandwich the tropopause [z_0 and z_1 in Eq. (8)]. Because the tropopause heights range from 9.5 to 11 km (260–210 hPa in pressure) in Fig. 3b, the upper (lower) level should be higher (lower) than 210 (260) hPa. Here we chose the upper level as 190 hPa, which corresponds to the lowest model level higher than 210 hPa. Similarly, the lower level is chosen as 290 hPa. Figure 3c shows a horizontal map of the tendency of LRT heights estimated from the RHS of Eq. (4) (viz., $-\theta_s$) on day 12. The plot indicates that the horizontal distribution of the LRT height tendency estimate is in good agreement with that of the observed tendency. The difference at 45°N is 0.1 km day$^{-1}$ at most.

From Eq. (5), the contribution of each term in the thermodynamic equation can be evaluated. The contributions of the vertical and horizontal advection terms are shown in Figs. 4a and 4b, respectively. Note that because θ_1 is equal to $(\nabla \cdot \nabla)\theta$ except for the numerical diffusion term in the present experiment, the summation of Figs. 4a and 4b is almost identical to Fig. 3c. The contribution from the vertical advection has opposite sign to that from the horizontal advection while the amplitude of the contribution from the horizontal advection is approximately twice as large as that of the vertical advection. It is reasonable to expect the compensation between the horizontal and vertical advection because, when the flow is quasigeostrophic, the (ageostrophic) vertical motion is determined by keeping the flow in approximate thermal wind balance (Holton and Hakim 2012). Figure 4c shows the contribution of the ageostrophic flow. The westward shift of the positive (negative) tendency associated with the ageostrophic flow is observed against the positive (negative) anomalies in the tropopause level (Fig. 3a), which can be understood in terms of the intrinsic phase speed of Rossby waves.
We also performed numerical experiments with different horizontal resolutions (T21, T42, and T170) and vertical resolutions (L20 and L60) and confirmed that the above results are not much changed (not shown here). In summary, from the numerical experiments for idealized baroclinic instability, it is confirmed that the tendency of LRT heights estimated from the derived equation accords well with the observed value. This means that Eq. (5) [and hence Eq. (4)] provides a quantitative evaluation of the contribution from each term in the thermodynamic equation to the change in the LRT height.

4. Application to GPS RO observations

Next, results for the application of our equations to the GPS RO observational data are shown. We focus on zonal-mean LRT heights in finite latitudinal ranges because the locations of GPS RO observations vary with time. Through a comparison of the tendency of the zonal-mean LRT heights $\partial z_T/\partial t$ with $-\theta_{z_1}/S$, it is possible to test the validity of (i) the simplified representation where the tropopause is regarded as the level of the discontinuity of θ_z and (ii) the approximation of the limit operation with the finite difference $[\cdot]_0$.

a. Data and analyses

The GPS RO data from the Constellation Observing System for Meteorology, Ionosphere and Climate/Formosat Satellite 3 (COSMIC/FORMOSAT3) are used. The dry temperature with a vertical resolution of about 100 m from the GPS RO observation is analyzed (Anthes et al. 2008). The dry temperature profiles are calculated from the observed refractivity under the assumption that the contributions of water vapor pressure and electron density are negligible. The accuracy of the dry temperature data is better than 0.5 K in the altitude range of 10–20 km and is about 0.5 K above an altitude range of 6–8 km (Schreiner et al. 2007; Shepherd and Tsuda 2008). The data are interpolated to intervals of 200 m to make the analysis easier. We adopted the algorithm for determining the first LRT height from the GPS RO measurements which was proposed by Schmidt et al. (2005). In the present study, 7 years of observational data (2007–13) are analyzed, which includes about 1600 vertical profiles per day on average.

Zonal-mean z_T (\bar{z}_T) are calculated daily for each hemisphere in eight latitudinal ranges: $0^\circ–10^\circ$, $10^\circ–20^\circ$, $20^\circ–30^\circ$, $30^\circ–40^\circ$, $40^\circ–50^\circ$, $50^\circ–60^\circ$, $60^\circ–70^\circ$, and $70^\circ–90^\circ$. The period analyzed for the latitude range of $90^\circ–50^\circ$S is limited to November–May since the LRT is often
undetectable there during the austral winter. Then, the obtained time series are smoothed with a low-pass filter with a cutoff length of 15 days to reduce nonuniformities in the number of observations. Small structures in vertical profiles of \(\theta \), which are associated with a variety of physical processes including frontal structures, gravity waves, and convection are considerably smoothed by the spatial and temporal filters.

b. Results

Figure 5 shows raw and smoothed time series of \(\tau_T \) for 2009 in \(0^\circ-10^\circ, 40^\circ-50^\circ \), and \(70^\circ-90^\circ \)N. We focus on the smoothed time series in the following analyses. In the tropics, high \(\tau_T \) (\(\sim 17 \) km) is observed in November–March and then descends to about 16 km in June. The seasonal variation of LRT height in the tropics is considered to be a reflection of the strength of upwelling in the TTL driven by extratropical and equatorial waves (Yulaeva et al. 1994; Norton 2006; Randel et al. 2008). Subseasonal variability in \(\tau_T \) is also observed, in particular, in January–February and July–October. In the midlatitude region, \(\tau_T \) shows a clear seasonal cycle having a peak (\(\sim 14 \) km) in the boreal summer and a minimum (\(\sim 10 \) km) in the boreal winter. This feature likely corresponds to the seasonality of the Hadley cell, whose poleward branch extends northward in the boreal summer. The Arctic \(\tau_T \) has a seasonal variation similar to that in the midlatitude region while a rapid descent is observed in late January. The rapid descent in late January is associated with sudden stratospheric warming (e.g., Kohma and Sato 2014).

As mentioned in sections 2b and 3b, in order to evaluate the RHS of Eq. (6), the two levels that sandwich the LRT have to be specified. In the following, a diagnosis using fixed altitudes, which is the same as in section 3, and that using a fixed distance from \(\tau_T (y, t) \) are shown. The latter is written as \(-[\bar{\theta}_y]_y^z \Delta z_0 / \bar{S} \), where \(\Delta z_0 \) and \(\Delta z_1 \) are distances from the zonal-mean LRT heights and the denominator \(\bar{S} \) is evaluated as \([\bar{\theta}_y]_y^z \Delta z_0 / \bar{\theta}_y \). The levels \(z_0 \) and \(z_1 \) were chosen such that the mean square of the difference between \(\partial \tau_T / \partial t \) and \(-[\bar{\theta}_y]_y^z \Delta z_0 / \bar{S} \) was minimized for each latitudinal range. Similarly, the relative distance \(\Delta z_0 \) and \(\Delta z_1 \) were determined so that the mean square of the difference between \(\partial \tau_T / \partial t \) and \(-[\bar{\theta}_y]_y^z \Delta z_0 / \bar{S} \) was minimized.

The levels used for the diagnostics are shown in Fig. 6. Both \(z_0 \) and \(z_1 \) have maxima in the tropics and lower values in the extratropics. It is likely that \(z_0 \) and \(z_1 \) correspond to the envelope of the spatial/temporal variation of the LRT heights as a function of latitude. The distance between \(z_0 \) and \(z_1 \) in \(20^\circ-30^\circ \) for both hemispheres is maximized. The largest distance for the chosen levels for the coordinate relative to zonal-mean LRT is also observed in \(20^\circ-30^\circ \). Note that it was confirmed that the following results do not change significantly if \(z_0, z_1, \Delta z_0, \) and/or \(\Delta z_1 \) are displaced by 0.2 km.

Figure 7 shows time series of \(\partial \tau_T / \partial t \), \(-[\bar{\theta}_y]_y^z \Delta z_0 / \bar{S} \), and \(-[\bar{\theta}_y]_y^z \Delta z_1 / \bar{S} \) in 2009 in \(0^\circ-10^\circ, 40^\circ-50^\circ \), and \(70^\circ-90^\circ \)N. It is found that both estimates are in good agreement with \(\partial \tau_T / \partial t \) in all three latitude ranges in many aspects: for example, subseasonal variation in January–February and July–October in the tropics, prolonged negative values (up to \(-80 \) m day\(^{-1}\)) in November–December in the midlatitude region, and large negative values (\(-100 \) m day\(^{-1}\)) in the Arctic in late January. The coefficients of determination (R-squared, or contribution rate) between \(\partial \tau_T / \partial t \) and \(-[\bar{\theta}_y]_y^z \Delta z_0 / \bar{S} \) are 0.86, 0.79, and 0.84 in \(0^\circ-10^\circ, 40^\circ-50^\circ \), and \(70^\circ-90^\circ \)N, respectively. The R-squared values for \(-[\bar{\theta}_y]_y^z \Delta z_1 / \bar{S} \) are 0.87, 0.84, and 0.92 in the same latitude ranges.

To describe how the real and estimated tendencies accord, the R-squared values and regression coefficients in 2007–13 are shown in Fig. 8. The R-squared values are greater than 0.64 except in the latitude range of \(20^\circ-30^\circ \) in both hemispheres. The highest R-squared values are
observed in 50°–60° (~0.94). The R-squared values for estimation from $-\frac{\bar{\theta}_i}{\bar{\theta}_i - \Delta z_i}$ are generally higher than those for the estimates based on fixed levels, particularly in the tropics. The R-squared values in the subtropical regions tend to be small compared to those in the other latitude ranges. To examine the validity of the assumptions used for the estimation method, examples of vertical profiles of monthly averaged u and u_{zT} as a function of height relative to z_T in Fig. 9a and 9b, respectively. The profiles are averaged over June 2009 in the latitude ranges of 0°–10°, 20°–30°, and 50°–60°N. Note that, compared to those shown in Birner et al. (2002), the profiles of $\bar{\theta}$ and $\bar{\theta}_i$ are smooth around the LRT since the time average is performed relative to the zonal-mean LRT [i.e., $\tau_T(y, t)$] rather than local LRT. The obvious jump in $\bar{\theta}_i$ across the z_T is seen in 0°–10° and 50°–60°N while $\bar{\theta}_i$ in 20°–30°N changes gradually across the LRT. This indicates that the assumption on a jump in $\bar{\theta}_i$ at the LRT [i.e., Eq. (3)] is not well satisfied for 20°–30°N compared with other latitudinal ranges. Similar results are also obtained in the southern latitudes.

Regarding the regression coefficients (Fig. 8b), the both estimates in 30°S–30°N show values close to one (0.95–1.05) while the coefficients in the high latitudes (70°–90°) are relatively small (0.79–0.93). This may be related to the time variation of the static stability in the altitude range between z_0 and z_1. Previous observational studies (e.g., Randel et al. 2007a; Tomikawa et al. 2009) demonstrated large seasonal variation in the static stability around the tropopause in the polar region. Figure 9c shows monthly mean $\bar{\theta}_i$ as a function of height relative to τ_T in 70°–90°N. In both profiles, distinct jumps in $\bar{\theta}_i$ are observed across the LRT while the maxima in $\bar{\theta}_i$ are observed about 1.6 km above τ_T, which corresponds to TIL, only in June. Thus, the small regression coefficients in the polar region should be attributable to the seasonal variation of $\bar{\theta}_i$ above the tropopause. In the latitude range of 30°–40°, the regression coefficients are significantly larger than 1. This is likely due to the gradual variation in $\bar{\theta}_i$ across the LRT in winter (Fig. 9d).

In the tropical regions, the CPT is well defined, and its seasonal variation is largely correlated with that of the LRT while the CPT is up to ~1 km higher than the LRT (e.g., Seidel et al. 2001). The estimates based on the coordinate relative to zonal-mean CPT in 0°–10°N are shown with the observed CPT tendency in Fig. 10. The Δz_0 and Δz_1 are chosen as ~1.0 and 0.6 km, respectively, which are the same as the values for the same latitude range shown in Fig. 6. The estimated tendency accords with the CPT tendency although the R-squared value (0.74) is smaller than that for the LRT-based tendency. Although the estimates are not perfectly accurate, the R-squared value between $\partial \tau_T/\partial t$ and

![Fig. 6.](image)

![Fig. 7.](image)
data are shown. Here, only the results for specific four days (1 January, 1 April, 1 July, and 1 October 2009) are shown, and the results of more statistical analysis will be discussed in the future.

5. Application to reanalysis data

In this section, examples of the horizontal distribution of the tropopause heights as an application to reanalysis data are shown. The Japanese 55-year Reanalysis dataset (JRA-55; Kobayashi et al. 2015) is used for the present analyses. The data product used here is on pressure levels and 1.25° × 1.25° longitude–latitude grid, and the temporal interval is 6 h. Similar to section 3, the z_T values are obtained by applying the method of Reichler et al. (2003) to vertical temperature profiles.

To evaluate the RHS of Eq. (6), a diagnosis is performed using a fixed distance Δz from the local tropopause height $z_T(x, y, t)$. In the following analyses, the constant value of 500 m is used as Δz although the optimal value should be a function of space and time. The values of $u_T(z_T \pm \Delta z)$ and $u_z(z_T \pm \Delta z)$ are calculated from a vertical interpolation in the log-pressure coordinates for each horizontal grid point. Note that the results for $\Delta z = 1000$ m are qualitatively the same as those for $\Delta z = 500$ m.

b. Results

The left column of Fig. 11 shows horizontal maps of the observed tendency of z_T together with z_T itself. The tropopause break is observed in the subtropics of both hemispheres. For all four days, the absolute value of the tendency tends to be larger in the extratropics than in the tropics. In addition, synoptic-scale structures predominate in the extratropics, whereas smaller-scale structures are dominant in the tropics.

FIG. 9. (a) Vertical profiles of $\bar{\theta}$ averaged over 0°–10° (solid), 20°–30° (broken), and 50°–60°N (dotted) in June 2009. The profiles are time averaged relative to the respective z_T (horizontal gray line). (b) As in (a), but for $\bar{\theta}_r$. (c) As in (b), but for 70°–90°N in June (solid) and December (broken) 2009. (d) As in (b), but for 40°–30°S in June (solid) and December (broken) 2009.
The estimated tendency and the observed values minus estimates are shown in the center and right columns of Fig. 11, respectively. The overall distribution of the estimates qualitatively agrees well with that of the observed values. The median (mean) absolute value of the difference, calculated for every 10° latitude band, is 0.1–0.2 (0.4–0.5) km day⁻¹, except in the high latitudes of the Southern Hemisphere on 1 October and in the latitude range of 20°–40°.

Around the tropopause break, large differences between the observed and estimated tendencies are often observed. Figure 12a shows a latitude–pressure section of temperature and θₑ together with z_T in 30°–50°N, 175°W on 1 January 2009. The LRT is located around 230 hPa on the north side of 35°N while it rises up to 120 hPa on the south side. In 35°–37.5°N, small θₑ are observed above tropopause (125–150 hPa). These features suggest that the tropopause break occurs around 35°N and that the derived equation is unlikely to provide appropriate estimates there.

Even other than subtropics, significant differences between the observed and estimated tendencies are occasionally found in some regions, for example, in 45°–65°S, 45°–75°E on 1 April (Fig. 11f); in 55°–65°S, 120°E, on 1 July (Fig. 11i); and in all the longitude ranges at 60°–70°S on 1 October (Fig. 11l). Figure 12b shows a latitude–pressure section in 65°–45°S, 60°E on 1 April. There is a strong horizontal temperature gradient in the troposphere.
around 57.5°S, with the height of the LRT considerably decreasing at higher latitudes. This indicates that the tropopause fold likely occurs with the tropospheric front structure. In such a situation, the denominator of Eq. (4) is underestimated, resulting in the large estimates for the tropopause tendency. It is confirmed that the large discrepancies that are likely associated with the tropopause folds are observed in the extratropics in other panels, for example, 45°–60°N, 90°–70°W on 1 January and 45°–60°S, 20°–15°W, on 1 October (not shown). Figure 12c showed the same plot but for in 70°–50°S, 120°E. The locally elevated tropopause is found in 62.5°–60°S. This is likely due to the low temperature in the winter stratosphere. In a similar way, most of the large discrepancies in the southern high latitudes on 1 October are associated with the low temperature in the polar stratosphere (not shown).

The present analyses showed several cases where the observed and estimated tendencies in zT are significantly different in the reanalysis data: the sharp transition region from the high tropical to the low extratropical LRT, tropopause folds associated with tropospheric fronts, and the polar winter (especially in the Southern Hemisphere). The estimates, nevertheless, considerably accord well with the observed tendency in most of the analyzed region, which indicates that the derived equation can be used sufficiently for quantitative analyses. Note that, since the reanalysis data is gridded at a horizontal resolution of 1.25° × 1.25°, the applicability to phenomena smaller than the resolution is still unknown. Another caveat is that, since reanalysis dataset contains assimilation increments inherently, which is not necessarily small around the tropopause (e.g., Fueglistaler et al. 2009a), the contribution by each term based on Eq. (5) must be carefully quantified.

6. Summary and concluding remarks

The present study derived a diagnostic equation for the LRT heights under the assumption that the tropopause is characterized by a discontinuity in the vertical gradient of the potential temperature. Because the derived equation is kinematic, the zonal-mean version of the relation can be derived unless the transition of θ_z across the tropopause is reasonably smooth.

To examine the validity of the assumptions that are used here, the derived relation was applied to the temporal variations of LRT heights associated with baroclinic waves in an idealized numerical calculation, to the zonal-mean LRT height obtained from GPS radio occultation data, and to temporal variations of LRT heights in reanalysis data. The applications showed that the estimated tendency of the LRT height corresponds well with the observed tendency. Together with the thermodynamic equation, it is possible to quantify the contribution from each term in the equation to the tendency of the LRT heights. In future studies, it would be interesting to examine the time variation of the LRT heights associated with various tropospheric and stratospheric phenomena by applying the diagnostic equations to reanalysis data.

The derived equation includes the sharpness of tropopause, which is considered important for stratosphere–troposphere exchange of air mass. From the derived diagnostic relation [e.g., Eq. (4)], the tendency of the LRT height turns out to be proportional to the inverse of the sharpness. In other words, the heating rate contrasts across the tropopause divided by the sharpness are converted into the tendency of the LRT heights.

Note that other equations including the tendency of the LRT heights can be derived using more complex,
and probably accurate, models of the tropopause. One candidate is the tropopause having a constant depth layer with high static stability above, which mimics the TIL. The resulting relation would include not only the tendency of LRT heights but also that of static stability in the TIL. The tendency equations of the tropopause defined by the potential vorticity or chemical tracers may be useful for analyses for the polar region. It should be emphasized that even though the equation is based on a simplified tropopause having a first-order discontinuity in the potential temperature, the obtained tendency is in a quite good agreement with the observed tendency. This means that the LRT is well approximated by a discontinuity of the vertical gradient in the potential temperature in terms of its temporal change.

Acknowledgments. This study is supported by JSPS KAKENHI Grant JP16K17801/JP19K14791 and JST CREST Grant JPMJCR1663. The COSMIC dry temperature data were provided by the COSMIC Data Analysis and Archive Center (http://cdac-ww.cosmic.ucar.edu/cdadec). The JRA-55 dataset is available from the JMA Data Dissemination System (http://jra.kishou.go.jp/JRA-55/index_en.html). DCPAM5 are developed by the DCPAM development team and available from https://www.gfd-dennou.org/library/dcpam/index.htm.en. All graphics were drawn by software developed by the Dennou-Ruby Davis project. We thank Ryosuke Shibuya and Arata Amemiya for helpful discussions and comments on this work. The authors acknowledge two anonymous reviewers for greatly helping us to improve this manuscript.

APPENDIX

Another Derivation of Eq. (4)

First, we introduce the following two assumptions: (i) θ_z has a discontinuity at $z = z_T(t)$ ($a < z_T < b$), but is otherwise a continuous function. (ii) θ_z is a smooth function except for $z = z_T(t)$. Let us consider the following integral over an interval of (a, b):

$$
\int_a^b \frac{\partial \theta}{\partial z} \, dz = \int_a^{z_T(t)} \frac{\partial \theta}{\partial z} \, dz + \int_{z_T(t)}^b \frac{\partial \theta}{\partial z} \, dz. \tag{A1}
$$

Taking the Euler derivative of Eq. (A1), the first term of the right-hand side can be rewritten as

$$
\frac{\partial}{\partial t} \left[\int_a^{z_T(t)} \frac{\partial \theta}{\partial z} \, dz \right] = \int_a^{z_T(t)} \frac{\partial}{\partial t} \left(\frac{\partial \theta}{\partial z} \right) \, dz + \frac{\partial z_T}{\partial t} \frac{\partial \theta}{\partial z} \bigg|_{z_T = 0},
$$

where $(\partial \theta/\partial z) \bigg|_{z_T = 0} = \lim_{z_T \to 0} (\partial \theta/\partial z)$. Here, Leibniz's integral rule is used:

$$
d \left[\int_{p(t)}^{q(t)} f(x, t) \, dx \right] = f[q(t), t] \frac{dq}{dt} - f[p(t), t] \frac{dp}{dt} + \int_{p(t)}^{q(t)} \frac{df}{dt} \, dx.
$$

Applying Leibniz’s rule to the second term on the right-hand side of Eq. (A1), the Euler derivative on the right-hand side of Eq. (A1) is rewritten as follows:

$$
\int_a^{z_T(t)} \frac{\partial \theta}{\partial z} \, dz + \int_{z_T(t)}^b \frac{\partial \theta}{\partial z} \, dz - \frac{\partial z_T}{\partial t} \frac{\partial \theta}{\partial z} \bigg|_{z_T = 0},
$$

$$
= \int_a^{z_T(t)} \frac{\partial \theta}{\partial z} \, dz + \int_{z_T(t)}^b \frac{\partial \theta}{\partial z} \, dz - \frac{\partial z_T}{\partial t} \frac{\partial \theta}{\partial z} \bigg|_{z_T = 0} + \frac{\partial \theta}{\partial t} \bigg|_{z_T = 0} - \frac{\partial \theta}{\partial t} \bigg|_{z_T = 0} = (A2)
$$

where $[f(z)]_a^b = f(b) - f(a)$ and $(\partial \theta/\partial z) \bigg|_{z_T = 0} = \lim_{z_T \to 0} (\partial \theta/\partial z)$. Note that the left-hand side of Eq. (A1) is $[\theta]^b_a$ and its Euler derivative is $[\theta]^b_a$. Thus, if $[\partial \theta/\partial z] \bigg|_{z_T = 0}$ has a finite value, the diagnostic relation is obtained:

$$
\frac{\partial z_T}{\partial t} = \frac{\partial \theta}{\partial z} \bigg|_{z_T = 0} . \tag{A3}
$$

Obviously, Eq. (A3) is equivalent to Eq. (4).

REFERENCES

