experts to dispose of all points of view that are worth consideration.

My ideas are the following. The transport of dust and sand is on the whole the same as the transport of snow by the wind. We have observations of the results of such transport of snow on the inland ice of Greenland which I have successfully treated by means of Tollmien's formula for flows of critical wave-length. In Greenland there are several hundred km over which the waves can develop. The thickness of the turbulent layer of air almost never exceeds 300m. It seems appropriate to apply the same method of consideration to the dust storms. It is of course impossible to say anything off hand on the critical wave-length to be expected and on their destruction [Zerstörung] since the correlation from snow to sand is unknown. The American meteorologists can probably supply information on the order of magnitude of the "d." [distance from the obstruction (forest) to the point where the laminar flow breaks down?] which depends on the thickness of the turbulent layer. I should suppose there are data on limitations, rhythms, and zones of dust and sand storms similar to the observations in connection with snow storms. From these data the magnitude of the rhythms to be destroyed may be deducted. In short I'm afraid that a forest zone west of the district which is to be protected results only in a narrow protection right behind the forest while at some distance (about 60 miles) bad turbulence may occur.

In my opinion actual relief will only be obtained by reforestation of systematically irregular forest aisles' all through the district which is to be protected.

Even a forest belt to be erected on the windward side of the zone which is to be protected would be more efficient if it were irregularly interrupted. A forest is not only a means of water preservation and of holding down the soil, but it is also a means of influencing the air flow up to heights of several thousand meters. At least this is what you would expect by comparison with the flow through tubes, which depends very much on the roughness of the walls even with very wide tubes.

Perhaps all I had to say is nothing new to the responsible men. In that case my letter will do no harm. However, you will understand that I did not want to refrain from making a contribution as long as there is the slightest chance that I could contribute something worth while.

I leave it entirely up to you to make any use of the above ideas that you see fit, if they should be good for anything at all. Most important thing is not to lose any time."—Courtesy of Prof. A. C. Lane; translation by K. O. Lange.

NEW BUILDING FOR MT. WASHINGTON OBSERVATORY

Ground has been broken (or rather rocks) west of the end of the trestle of the cog railroad for a new building for the Mt. Washington Observatory on the summit of Mt. Washington (6284 ft.). On this rocky summit it was surprising to find glacial till to a depth of 3 or 4 feet where holes were dug for the placement of heavy bolts by which the building is to be fastened to the rocks. Since the Observatory was established by a group of enthusiastic young men in the fall of 1932 it has been housed free of charge in the stage office of the Mt. Washington Summit Road Co. So slender...
have been the resources of the Observatory that the withdrawal of this privilege would have closed the Observatory. Greatly increased business on the auto road last summer, however, made it imperative for the Summit Road Co. to request the return of the building for the use of its patrons. The emergency to the Observatory thereby created was generously met by Col. Henry N. Teague, (President) of the Mt. Washington Railway, who not only permitted the Observatory to occupy Camden Cottage for the summer and housed and boarded the observers at the Mt. Washington Club but also agreed to construct a staunch wooden building 22x44 feet, two stories high, and a slightly tapering tower 14x14 feet at the base and 25 feet high, as nearly as practicable according to sketch plans submitted by the Observatory, on a guarantee of only one year's payment of $500 toward purchase. The engineering department of the Boston & Maine RR has drawn plans providing sufficient strength in bracing and bolting of building to the rocks and of roof to the frame to withstand a wind of 220 mi/hr., at a density 10% less than that at sea-level. While these plans served for the fabrication of the heavy and well-braced frame, certain economies will be effected in details. Furnace, water tank, and plumbing will be provided by a member of the Society, and heavy plate glass double windows (17) will be provided by the Pittsburgh Plate Glass Co., for an experiment in this exposed location. The Weather Bureau will continue to maintain one full-time commissioned employee and two part-time airways observers, while Harvard University, through Blue Hill Observatory, will be responsible for operation, supplies and the balance of the salaries to provide full time for the airways observers, and a fourth man, toward which $3250 in gifts, pledges and grants have been received from individuals, groups, the New Hampshire Academy of Sciences, the Smithsonian Institution, the Appalachian Mountain Club, and the State of New Hampshire. Toward this, members of the Society contributed $420.50. The observations are used daily by the Weather Bureau, M. I. T. and Blue Hill Observatory, and the latter is engaged in research in aerology, involving particularly the structure of fronts, as revealed by the continuous observations on this highest peak in the northeastern United States. The four years record of the Mt. Washington Observatory and its future possibilities as a research laboratory in meteorology as well as in geology and alpine biology more than justify its permanent establishment.—Charles F. Brooks.

NECROLOGY

James H. Scarr, for 26 years in charge of the Weather Bureau's busiest station, at New York City, died Feb. 14 at the age of 69. Mr. Scarr's work was almost wholly bound up with the practical applications of weather advices to the multifarious activities of a great city. Much of his time had to be spent as witness in court, bringing the evidence of the weather into thousands of civil and criminal suits. His story "The weatherman in court" describes some of these. These and other aspects of his vast public service might have been interestingly presented in a book had he lived. A quiet, genial man, Mr. Scarr had about him a grandfatherly air which readily won and kept friends.—C. F. B.

1Sat. Evening Post, 1928(?)

Unauthenticated | Downloaded 09/24/23 06:50 AM UTC