Reply to “Comments on ‘Monitoring and Understanding Trends in Extreme Storms: State of Knowledge’”

—JAMES P. KOSLIN AND THOMAS R. KARL
NOAA/National Centers for Environmental Information
Asheville, North Carolina

—THOMAS R. KNUTSON
NOAA/Geophysical Fluid Dynamics Laboratory
Princeton, New Jersey

—KERRY A. EMANUEL
Massachusetts Institute of Technology
Cambridge, Massachusetts

—KENNETH E. KUNKEL
NOAA/National Centers for Environmental Information, and
Cooperative Institute for Climate and Satellites
North Carolina State University
Asheville, North Carolina

—JAMES J. O’BRIEN
Florida State University
Tallahassee, Florida

We welcome the comments of Landsea (2015, hereafter L15) and we applaud his efforts toward reanalyzing past tropical cyclone data in the Atlantic (Landsea et al. 2008, 2012, 2014; Hagen et al. 2012). However, L15 does not substantially change the conclusions stated in Kunkel et al. (2013, hereafter K13). L15 voices two main concerns:

1) The U.S. landfalling hurricane time series considered by K13 is dated.

2) The U.S. landfall record exhibits multidecadal variability that places the changes since 1970 into a larger perspective than K13 provided. Related to this concern, L15 introduces assertions about the relationship between U.S. landfall variability and basinwide North Atlantic variability.

We will address each of these points here:

1) K13 stated “Landfalling tropical cyclone activity in the United States, as well as East Asia, shows no significant long-term trends (e.g., Landsea 2005)” (p. 506). We are not aware of any published papers that have updated the U.S. landfalling hurricane time series beyond the papers cited in K13 (including not just Landsea (2005) but also Vecchi and Knutson (2011)). L15’s inference that K13 presented dated information is not supported and the update introduced by L15 is in complete agreement with the statements of K13.

2) K13 stated “Owing to pronounced multidecadal variability evident in longer-term records of Atlantic basinwide or U.S. landfalling tropical cyclone frequency (e.g., Vecchi and Knutson 2011, see their Fig. 5), the period since around 1970 (e.g., Fig. 5) appears to be too short to draw confident inferences about longer-term (e.g., century scale) trends in Atlantic tropical cyclone activity” (p. 506). L15 fundamentally concurs with the broader perspective that K13 provides about the inability to draw confident inferences about century-scale trends from the observed post-1970 Atlantic activity.

In K13, a conscious choice was made to focus on the increases over the shorter period since the 1970s and address the attribution for these increases, because much of the state of knowledge is being actively promulgated on this shorter period. This is demonstrated by the citations in K13 as well as the IPCC Fifth Assessment Report (Bindoff et al. 2014) published subsequent to K13. The contrasting emphases of K13 and L15 are both important; one does not preclude the other, and the emphasis of L15 has been previously addressed (e.g., Knutson et al. 2010; Seneviratne et al. 2012; Hartmann et al. 2014; Zwiers et al. 2013). Anthropogenically forced change and internal climate variability have most likely affected North Atlantic hurricane activity and sea surface temperatures in a broad range of ways, and the quantification of these influences remains a significant research challenge (Dunstone et al. 2013; Tung and Zhao 2013; Zhang et al. 2013; Carslaw et al.

1 The authors list on this reply comprises a subset of authors from K13 who specialize in tropical cyclone research, provided comments, or helped lead the overall author team’s work.
2013; Mann et al. 2014). Century-scale trends forced by steadily increasing greenhouse gases are not the only focus of detection and attribution studies and should not define the state of knowledge.

Statements about the relationship between U.S. landfall variability and basinwide variability remain controversial (Holland 2007), and we would argue that the statements of L15 should be subjected to a more formal review than a comment/reply exchange provides. In addition to the decreased signal-to-noise ratio of measured trends when subsetting basinwide activity (K. Nzerem et al. 2006, unpublished manuscript; Emanuel 2011), there are substantial questions about whether U.S. landfalling activity can serve as an adequate proxy for basinwide North Atlantic activity when there are systematic and significant relationships between climate and tropical cyclone track variability (Kossin et al. 2010, 2014). This latter point was discussed briefly in K13. Finally, although the correlation of 0.49 identified by L15 is statistically significant, the associated common variance of only 24% emphasizes that the variability of the U.S. landfall record leaves a very large part (76%) of the basinwide variance unexplained.

Given the importance of understanding changes in the U.S. landfalling hurricane activity and how they relate to basinwide North Atlantic variability and trends, we feel that it is crucial to have the data and methods, as well as assertions of common variance between landfall and basinwide activity, subjected to a more formal and complete peer review, and we hope that Landsea and/or others will undertake a more thorough study.

REFERENCES

Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natu-

Climate

The Thinking Person’s Guide to Climate Change
ROBERT HENSON

This fully updated and expanded revision of The Rough Guide to Climate Change combines years of data with recent research. It is the most comprehensive overview of climate science, acknowledging controversies but standing strong in its stance that the climate is changing—and something needs to be done.

LIST $30
MEMBER $20

Climate Conundrums: What the Climate Debate Reveals about Us
WILLIAM B. GAIL

This is a journey through how we think, individually and collectively, about humanity’s relationship with nature, and more. Can we make nature better? Could science and religion reconcile? Gail’s insights on such issues help us better understand who we are and find a way forward.

LIST $30
MEMBER $20

LHm9600.png

Living on the Real World: How Thinking and Acting Like Meteorologists Will Help Save the Planet
WILLIAM H. HOOKE

Meteorologists focus on small bits of information while using frequent collaboration to make decisions. With climate change a reality, William H. Hooke suggests we look to the way meteorologists operate as a model for how we can solve the 21st century’s most urgent environmental problems.

LIST $30
MEMBER $22

Guides

TOBY CARLSON, PAUL KNIGHT, AND CELIA WYKOFF

With help from Penn State experts, start at the beginning and go deep. This primer, intended for both serious enthusiasts and new meteorology students, will leave you with both refined observation skills and an understanding of the complex science behind the weather: the ingredients for making reliable predictions of your own. It connects fundamental meteorological concepts with the processes that shape weather patterns, and will make an expert of any dedicated reader.

LIST $30
MEMBER $20

Eloquent Science: A Practical Guide to Becoming a Better Writer, Speaker, and Atmospheric Scientist
DAVID M. SCHULTZ

The ultimate communications manual for undergraduate and graduate students as well as researchers in the atmospheric sciences and their intersecting disciplines.

LIST $45
MEMBER $30

Textbook

Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting
GARY LACKMANN

This textbook links theoretical concepts to modern technology, facilitating meaningful application of concepts, theories, and techniques using real data.

LIST $100
MEMBER $75
STUDENT MEMB. $65

Midlatitude Synoptic Meteorology Teaching CD
More than 1,000 PowerPoint Slides.
LIST $100
MEMBER $75
that the climate is changing—and overview of climate science, of data with recent research. Climate Change combines years This fully updated and expanded Person’s Guide to The Thinking Real World: Living on the Could science and religion reconcile? humanity’s relationship with nature, individually and collectively, about Reveals about Us What the Climate Debate Climate Conundrums: Meteorology: Midlatitude Synoptic Weather Analysis and Forecasting: A Tribute to Fred Sanders Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders How did big science come to Boulder, Colorado? Joe Bassi introduces us to the characters, including Harvard sun-Earth researcher Walter Orr Roberts, and the unexpected brew of politics, passion, and sheer luck that during the Cold War era transformed this “Scientific Siberia” to home of NCAR and NOAA.

A Scientific Peak: How Boulder Became a World Center for Space and Atmospheric Science JOSEPH P. BASSI

How did big science come to Boulder, Colorado? Joe Bassi introduces us to the characters, including Harvard sun-Earth researcher Walter Orr Roberts, and the unexpected brew of politics, passion, and sheer luck that during the Cold War era transformed this “Scientific Siberia” to home of NCAR and NOAA.

More than 1,000 PowerPoint Slides. This textbook links theoretical concepts with the processes that shape weather patterns, and will make an expert of any dedicated reader.
Find out from the authoritative source for definitions of meteorological terms.

What’s a dust devil?

With over 12,000 meteorological terms, you’ll be able to look up definitions online any time, any place, anywhere.

http://glossary.ametsoc.org/wiki

Also available in hardcover and CD formats at the AMS Bookstore, www.ametsoc.org/amsbookstore.