Higher Temperature Enhances Spatiotemporal Concentration of Rainfall

KAIHAO LONG,†DAGANG WANG,† GUILING WANG,† JINXIN ZHU,† SHUO WANG,† and SHUISHI XIE

†School of Geography and Planning, Sun Yat-Sen University, Guangzhou, Guangdong, China
‡Ping An Property and Casualty Insurance Company of China Ltd, Shenzhen, China
§Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
∥Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong, China
¶Hydrology and Water Resources Monitoring Center for Ganjiang River Upstream, Ganzhou, Jiangxi, China

(Manuscript received 24 February 2021, in final form 8 October 2021)

ABSTRACT: The relationship between extreme precipitation intensity and temperature has been comprehensively studied over different regions worldwide. However, the effect of temperature on the spatiotemporal organization of precipitation, which can have a significant impact on precipitation intensity, has not been adequately studied or understood. In this study, we propose a novel approach to quantifying the spatial and temporal concentration of precipitation at the event level and study how the concentration varies with temperature. The results based on rain gauge data from 843 stations in the Ganzhou county, a humid region in south China, show that rain events tend to be more concentrated both temporally and spatially at higher temperature, and this increase in concentration qualitatively holds for events of different precipitation amounts and durations. The effects of temperature on precipitation organization in space and in time differ at high temperatures. The temporal concentration increases with temperature up to a threshold (approximately 24°C) beyond which it plateaus, whereas the spatial concentration keeps rising with temperature. More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warming world, causing more detrimental effects.

KEYWORDS: Precipitation; Surface temperature

1. Introduction

Global climate changes have been observed with an evident increase in both temperature and precipitation throughout the last century (Alexander et al. 2006). An important consequence of a warming climate is the increase of precipitation extremes, as supported by both observational and model-based studies (Christensen and Christensen 2004; Wang et al. 2017; Papalexiou and Montanari 2019). As intensified extreme precipitation events likely cause more serious damage to the ecosystems, economy, and society (Chen et al. 2012; Pei et al. 2016; Peleg et al. 2020; Weyhenmeyer et al. 2004), assessing the impact of temperature on precipitation and possible future changes of precipitation events is crucial for guiding climate adaptation efforts.

Previous studies on the relationship between precipitation and temperature focus mostly on how precipitation amount and intensity change with rising temperature and what factors confound this relationship. According to the Clausius–Clapeyron (CC) equation, the capacity of the atmosphere to hold water vapor increases with rising temperature at a rate of about 7% °C⁻¹ (termed as the CC scaling rate), thus extreme precipitation intensity is expected to increase with temperature at a similar rate (termed as the precipitation scaling). However, observations demonstrate that the local precipitation scaling is not always consistent with the CC scaling rate. A quasi-global assessment of the precipitation–temperature relation (Wasko et al. 2016a) shows that precipitation scaling greatly varies with region, ranging from negative scaling to double CC scaling. Further studies imply that the precipitation scaling may be influenced by relative humidity (Hardwick Jones et al. 2010), time scale (Utsumi et al. 2011), and even precipitation type (Berg et al. 2013). Recent studies show that the scaling can be quite consistent if proper methods are used. For example, Visser et al. (2020) found that the extreme precipitation–temperature scaling is quite consistent across Australia when using the dry-bulb temperature just prior to precipitation. The use of dewpoint temperature also helps increase the consistency in such scaling (Fowler et al. 2021). However, the rate of precipitation scaling with temperature still varies across regions. In a recent study, Lochbihler et al. (2017) pointed out that the higher rate of precipitation scaling tends to coincide with a larger spatial extent, which highlights the importance of the spatial rainfall characteristics in explaining the precipitation–temperature relationship. Furthermore, how the spatiotemporal characteristics of precipitation might change with temperature bears direct relevance to the scaling of precipitation intensity.

How temperature influences the spatiotemporal characteristics of precipitation has been tackled by several recent studies. Wasko and Sharma (2015) found that the temporal distribution of rainfall tends to be less uniform in warmer environments based on measurements at 79 gauge stations in Australia. Using the same measurements in Australia, Wasko et al. (2016b) show that rainfall is more concentrated in the storm center with a reduced spatial extent at high temperature, which was subsequently confirmed by a modeling study on the Greater Sydney region (Li et al. 2018). Based on high-resolution weather radar data over the Mediterranean,
Peleg et al. (2018) found the storm area decreases with warmer temperatures. Consistent with the observational evidence, climate models also projected substantially higher intensity of heavy precipitation in a warmer climate under the future emission scenarios (Prein et al. 2017; Rastogi et al. 2020). These studies were carried out for relatively dry climate zones in Australia and the Mediterranean, and focused on the impact of temperature on either temporal or spatial organization. A more comprehensive study is needed to investigate the precipitation organization in both space and time and its relationship with temperature, especially for relatively humid climate regimes.

The temporal or spatial concentration of precipitation, which is an indicator of rainfall distribution over time or space, is an important feature of rainfall events. Different indices have been proposed to quantify precipitation concentration. For temporal concentration, Martin-Vide (2004) proposed the concentration index (CI), which measures the ratio of heavy rain to total rainfall, based on the Gini index concept to quantify the unevenness of long precipitation time series. Although CI is widely used to characterize the temporal concentration of daily rainfall, it requires data with a long time series and thus is not suitable for rainfall analysis at the event scale. Another index termed precipitation concentration index (PCI) measures the temporal unevenness of precipitation, based on the deviation between the square of sum and the quadratic sum of precipitation series (Oliver 2010). PCI has been used to evaluate the concentration of precipitation series at different time scales, such as the monthly scale (de Luis et al. 2011) and the seasonal scale (de Luis et al. 2010). The advantage of PCI is that it can be applied to precipitation time series of any length. However, the PCI-based results are not comparable between precipitation time series of different lengths, as the length of data has a direct influence on the results. As for spatial concentration, Lochbihler et al. (2017) defined the spatial extent of rainfall as the square root of the continuous area with rainfall intensity exceeding a threshold and applied this definition to the evaluation of spatial precipitation concentration. Wasko et al. (2016b) used the concept of effective radius, which is a precipitation-weighted distance from the centroid of the storm, to assess how spatially concentrated the storm is.

Existing indices pertain to rainfall concentration either in space or in time. A unified approach applicable to concentration in both space and time is lacking. Moreover, existing indices cannot reflect the nature of the spatiotemporal organization in a way relevant to flood risk. In addition, it is not clear whether the rainfall concentration–temperature relationship found in arid and Mediterranean climates might hold in more humid climate regimes. In this paper, we propose new indices to represent temporal and spatial concentration at the rain event scale in a unified framework; we then apply the definitions and their calculations to precipitation gauge measurements and investigate how the precipitation concentration might change with temperature.

2. Study area, data, and methods

In this paper, we take Ganzhou, a county located in Jiangxi province, China, as our study area. Ganzhou is 39,380 km² in area, covering longitude 113.5°–117.0° E and latitude 24.5°–27.5° N with a subtropical humid monsoon climate. Two types of data, rainfall and temperature, are used for analysis. The rainfall dataset is from measurements at gauge stations in the Ganzhou region, which contains 843 valid rainfall stations and spans a period of 5 years from 2013 to 2018 (Fig. 1). The gauge stations are quite evenly distributed over the region. Snowfall is excluded from the analysis as it rarely occurs in this region and cannot be accurately measured by the tipping bucket at the gauge stations. Rainfall data are recorded at a 5-min interval for each rain event. As for temperature data, due to the absence of temperature records from the rain gauge stations, we use a gridded temperature data, the CMA Land Data Assimilation System (CLDAS) 2-m air temperature (Zhao et al. 2018), as a surrogate for gauge measurements in this study. The CLDAS temperature dataset has a temporal resolution of 1 h and a spatial resolution of 0.0625°. As spatial scales are different between rain gauge measurements and CLDAS temperature, we match the rainfall data at each station with the temperature data at the CLDAS grid cell encompassing the gauge station.

With the paired rainfall and temperature data, we split the time series data into a number of rain events according to the duration between two events, and this is done for each station separately. To define rain events, we take a threshold that is 5 times the data temporal resolution following the approach of Wasko et al. (2016b). Specifically, if the dry period between two continuous series of rain is longer than 5 times the temporal resolution (i.e., 25 min), these two series are considered as two separate rain events. We finally obtain 242,841 rain events from the original data. Figure 2 shows the statistics of these rain events, including the number of rain events and their spatial distribution, and histograms of rain duration and amount. The number of events at each station approximately ranges from 150 to 400. Most events last less than 14 h, with rain amount less than 100 mm.
We calculate the rainfall amount, duration, and the concurrent temperature for each rain event, where the concurrent temperature is estimated as the arithmetic mean of hourly temperature during the rain event.

Inspired by the concept of CI proposed by Martin-Vide (2004), we propose new indices to represent the concentration of rainfall in time and space, respectively, for rainfall events within a unified framework. Conceptually, the temporal concentration index (TCI) of a rain event measures the deviation of the cumulative rainfall over any portion of an actual rain event from that of an assumed evenly distributed rain event with the same amount. For each event, the cumulative series include cumulative rain amounts corresponding to durations surrounding the temporal center of the event (i.e., the most concentrated point in the temporal distribution of rainfall). For any given temporal center, the accumulation starts with rainfall in the interval at the temporal center; rainfall is then added to the accumulation one interval at a time, starting from the interval(s) closest to the temporal center and extending outward. For intervals with the same time difference from the temporal center, the interval with more rainfall is added first. It is important to identify the temporal center of rain events in calculating TCI. However, automatically identifying the center is challenging, as the time point at which the strongest rain occurs is not always the temporal center in a rain event. For practical use, we calculate TCI using each time point during a rain event as the hypothetical temporal center; the largest TCI identifies the true temporal center and is taken as the final TCI of the event. As shown in Fig. 3, the detailed calculation procedure has five steps:

Step 1: Choose a time point as the hypothetical temporal center, and mark this point as time ID 1 (Fig. 3a).
Step 2: Mark the two time points next to the temporal center as time IDs 2 and 3 (the point with larger rainfall in...
these two points ranks higher), and mark the remaining
time points as time IDs 4, 5, and so on (Fig. 3a).

Step 3: Calculate the cumulative rainfall corresponding to
each ID, and plot the curve for the cumulative rainfall
versus accumulation time. The curve starts from the
coordinate origin (0, 0) and ends at (\(T, P\)), where \(T\) and
\(P\) are the duration and total rainfall of the rain event,
respectively (Fig. 3a).

Step 4: Calculate the difference between the curve of actual
rain event obtained in step 3 (Fig. 3b) and the straight line
that represents an evenly distributed rain event (Fig. 3c).
The difference is represented by the area \(dA\) enclosed by
the curve and the straight line connecting (0, 0) and (\(T, P\))
in Fig. 3d. The ratio of \(dA\) to the triangle area \(A\) is the TCI
for the chosen temporal center in a rain event, i.e., to what
degree rainfall is concentrated around the chosen time point
during the event. It is noted that the areas above the
straight line are taken with a positive sign, whereas those
under the straight line are taken with a negative sign.

Step 5: Treat each remaining time points as the hypothet-
ical temporal center and repeat steps 1–4 to calculate
TCI (Fig. 3e).

At the end of step 5, every time point during the rain event
will have a corresponding TCI value; the time point with the
largest TCI value is the actual temporal center of the rain
event, and the corresponding TCI value is considered the final
TCI of the rain event (Fig. 3e).

The final TCI varies in the range [0, 1). An index value
closer to 1 indicates that rainfall is highly concentrated in
time, whereas the value closer to 0 means a more uniform
rain event. This is not without exception. For an idealized,
temporally symmetric bimodal rainfall process that reaches its
maximum intensity at the very beginning and very end of the
event, the event TCI value approaches or may even equal
zero. However, this type of events is extremely rare in reality
and is nonexistent in our station records; most events start
and/or end with lighter rain, which effectively steers the TCI
value away from zero toward a positive value. This exception
therefore does not affect the results and the conclusion of this
study. A rain event with a TCI value of 1 would be in the
form of an impulse, which is not realistic. The range between
0 and 1 makes TCI comparable among rain events of different
durations. In addition, TCI represents the temporal concen-
tration around the temporal center in a rain event instead of
the unevenness of a rain series. This is of great significance
for flooding, as more concentrated rainfall around the rain center
with a large amount of total rainfall can lead to a more disas-
trous flood.
Similar to the concept of TCI, we propose a spatial concentration index (SCI) to represent how rainfall concentrates in space for a rain event. First, we define the rain event from the spatial perspective following Wasko et al. (2016b). An SCI value is computed for each time interval. A spatial event for any central gauge is defined by concurrent rainfall at neighboring gauges within a radius of 20 km from the central gauge in a 5-min temporal interval, and SCI is calculated for each spatial event. As such, a rain event is recorded as a set of stations and their corresponding rainfall amounts from the spatial perspective (Fig. 4a).

We then plot the rain amount at each station (including the central station and its neighboring stations) according to its distance from the central station, as shown in Fig. 4b. Similar to the procedure in calculating TCI, we take the central station as the assumed spatial center, calculate the accumulative rainfall with respect to distance (red line in Fig. 4c), and estimate the relative difference in the cumulative rainfall between the actual rain event and an assumed evenly distributed rain event with the same total amount. A meaningful SCI value for a spatial rain event largely relies on the selection of the spatial center of the event. To identify the spatial center, we use a similar method used to identify the temporal center in the TCI calculation. We take each station as the presumable spatial center calculate the corresponding SCI using the aforementioned procedure, and adopt the largest SCI as the final SCI for a specific rain event. The range of the final SCI is between 0 and 1, similar to TCI.

With the proposed TCI and SCI, we calculate the values of the two indices for all rain events, and study the characteristics of the indices and their relationships with temperature. It is noted that temperature for a rain event in the TCI calculation is estimated as the arithmetic mean of hourly temperature during the event, and the estimation of temperature for a spatial rain event in the SCI calculation is based on the arithmetic mean of temperature across the grid cells within the radius threshold.

3. Results and discussions

a. Temporal concentration of rain events and its relation with temperature

To minimize the uncertainty associated with short-duration events, we remove all events shorter than 1 h, and only keep those that are more than 1 h in duration (i.e., with 12 or more time steps) for the analysis. Figure 5a shows the distribution of TCI values of all the selected events. The distribution of TCI can be well described by a beta distribution function, indicating that rain events with different temporal concentrations do not occur with the same probability. Events with moderate temporal concentration (around 0.2 of TCI) occur more frequently, whereas those with high temporal concentration and those with nearly uniform distribution account for a small portion of total events.

Furthermore, to explore the effect of temperature on the distribution of temporal concentration of rain events, we divide the events into two groups according to temperature: one containing events occurring at temperatures lower than 20°C, and the other containing the rest. Figure 5b shows the corresponding TCI distribution for the two groups of rain events, which can also be described by a beta distribution. Both the sample distribution and the fitted beta distribution of TCI (Fig. 5b) indicate that the two temperature groups differ from each other. A Kolmogorov–Smirnov (KS) test applied to the cumulative distributions indicates the difference is statistically significant, which is verified by a close-to-zero p value (Fig. 5c) and sufficiently large sample sizes of the two groups (Fig. 5d). Most events in the lower temperature group have TCI values ranging from 0.2 to 0.4 and fewer events have TCI values greater than 0.4, whereas approximately half of the events in the higher temperature group have TCI values greater than 0.4. This indicates a potential dependence of the temporal concentration of rain events on temperature, i.e., rain events may be more temporally concentrated under warmer conditions.

To confirm this assumption, we carry out further analysis using a binning method. With a compromise between the
number of bins and the sample size in each bin, we choose a bin size of 2°C and divide the events with temperature ranging from 5°C to 30°C into 12 bins, and calculate the average TCI values within each bin. It is evident that the bin-averaged TCI value increases with temperature within the range of 5°C–24°C and plateaus at temperatures beyond 24°C (Fig. 6a).

Similar results are obtained when stratifying the analysis according to event-scale rainfall amount (e.g., 50th, 75th, and 90th percentiles). The increasing trends of all groups in Fig. 6a are significant at the 99% confidence level, which is supported by the statistical test with a Spearman correlation method. The 95% confidence interval of the TCI–temperature curve for all events is small (Fig. 6b). The ascending pattern of the temporal concentration with increasing temperature within the range of 5°C–24°C is consistent with the findings of Wasko and Sharma (2015) that higher temperatures induce a less uniform temporal pattern (i.e., a temporally more concentrated pattern) of rainfall. Besides, our results seem to reveal a temperature threshold beyond which the increase of the bin-averaged TCI stagnates. The threshold of 24°C is similar to the peak-point temperature in the precipitation scaling with temperature (Utsumi et al. 2011; Xiao et al. 2016).

The peak structure of the relationship between extreme precipitation intensity and temperature is widely observed over the globe (Wang et al. 2017). Extreme precipitation increases with temperature below a temperature threshold beyond which extreme precipitation plateaus or even decreases with the increase of temperature. There are several possible underlying mechanisms for the peak structure. For instance, Utsumi et al. (2011) found that the decrease of the rain duration could well explain why extreme daily precipitation intensity decreases at higher temperatures. Hardwick Jones et al. (2010) suggested that moisture availability is the dominant driver of how extreme precipitation scales with rising temperature. A similar temperature threshold for the

Fig. 5. Sample distribution and fitted beta distribution of TCI for (a) all rain events and (b) events at temperatures below 20°C (blue) and above 20°C (red), where dashed lines represent the fitted beta distributions; (c) cumulative distribution of TCI and (d) the total number of rain events at temperatures below 20°C (blue) and above 20°C (red).
The relationship between bin-averaged TCI and temperature for (a) all events and the events with rainfall amount beyond the percentile of 50th, 75th, and 90th, respectively, where the bar shows the number of events within each bin; (b) all events with the 95% confidence interval; (c) events with durations of 1–2, 2–3, 3–4, and longer than 4 h, respectively, where the bars show the number of events within each bin.

That is, the limited temporal concentration of precipitation events at higher temperatures may be one of the reasons why extreme precipitation intensity does not continue to increase with temperature.
to increase at higher temperature, a topic warranting further studies in the future.

We investigate the effect of rain duration on the temporal concentration–temperature relationship by dividing the events into four groups according to the rain duration (Fig. 6c). The events with durations of 1–2, 2–3, and 3–4 h account for 33.8%, 23.7%, and 15.5% of total rain events, respectively. Similarly, the TCI increases with rising temperature within the range of 5°C–24°C and plateaus at temperatures higher than 24°C. However, rain events with shorter durations tend to have higher temporal concentration under the same temperature range, as convective rain accounts for the majority of short-duration rain events and is usually more concentrated. In general, Fig. 6 confirms the robustness of the relationship between the rainfall temporal concentration and temperature, no matter how long a rain event lasts. However, different temperature sampling (e.g., use of prestorm temperature or dew-point) may influence the results (Visser et al. 2020), and such potential sensitivity will be explored in follow-up research.

Event separation is the first step in the aforementioned analysis and is accomplished by comparing the dry period between any two rainfall series against a threshold. To examine the results sensitivity to this duration threshold, we experiment on separating rain events using different thresholds (e.g., 50 and 75 min) besides the 25 min used in the primary analysis. The TCI characteristics and their relationship with temperature remain similar when a different separation threshold is used (Fig. 7), suggesting that the TCI–temperature relationship is independent of how rain events are separated.

Fig. 8. The distribution of SCI for (a) all rain events and for (b) events at temperatures below 20°C (blue) and above 20°C (red), where the dashed lines represent the fitted Wald distributions; (c) cumulative distribution of SCI for events at temperatures below 20°C (blue) and above 20°C (red), and (d) the number of events in different temperature groups.
b. Spatial concentration of rain events and its relation to temperature

Using a similar approach, we study the relationship between the spatial concentration of rain events and temperature. Figure 8 shows the SCI distribution and how it differs between warmer (above 20°C) and cooler (below 20°C) conditions. Different from the beta distribution for TCI (Fig. 5), SCI is better described by a Wald distribution (Fig. 8a). Similar to TCI, the SCI distribution is significantly different between the two temperature groups based on a KS test (Figs. 8b–d). The bin-averaged SCI continually increases with temperature in the full temperature range when all events are lumped together, and its 95% confidence interval is quite small (Figs. 9a,b). A similar SCI–temperature relationship is found when the analysis is stratified according to rain amount, showing little difference between low- and high-percentile events (Fig. 9a). The increase of SCI with temperature is consistent with the finding of Wasko et al. (2016b) that storms become spatially more concentrated at higher temperatures with an increase of the peak precipitation intensity and a decrease of the spatial extent. Comparing Fig. 6a with Fig. 9a, we can find that the spatial concentration index keeps rising as temperature increases, which is different from the relationship between the temporal concentration and temperature. This may reveal that the underlying mechanisms are different between the spatial dimension and the temporal dimension in terms of how temperature affects the concentration. Water vapor redistribution in space under warmer conditions is considered as the main reason for higher concentration with rising temperature (Wasko et al. 2016b). Moreover, our results also indicate that rain events with longer durations tend to be more evenly distributed in space (Fig. 9c), which is similar to the effect of duration on the temporal concentration (Fig. 6c). Note that the study area is located in south China with a
subtropical climate. Both frontal and convective rain are common. The majority of the long-duration rain events are of frontal type, which usually spread relatively uniformly over a large region. The rate of TCI and SCI scaling with temperature as reflected by Fig. 6a and Fig. 9a does vary spatially but shows no clear spatial variation (not shown), probably because the study region is not large enough and does not span different climate regimes.

The radius used to identify neighboring gauges for any given central gauge is a key parameter in defining the spatial event, and its value may influence the SCI characteristics and their relationship with temperature. To examine its impact on the results, we carry out a sensitivity experiment in which the same SCI analysis procedure is repeated multiple times, each with a different radius. As shown in Fig. 10, the SCI–temperature relationships are very similar under different radii, which confirms the robustness of the relationship.

4. Summary

In this study, we propose a novel approach to quantifying the precipitation concentration in both time and space at the rain event level and study how the concentration changes with temperature. The proposed approach defines the temporal concentration and the spatial concentration of precipitation in a unified framework. Different from previous indices that characterize the unevenness of precipitation time series, the concentration indices defined in this study reflect how rainfall is concentrated around the temporal or spatial center, which is a more relevant indicator for flood risks.

Results based on analysis of rain gauge data from 843 stations in a humid region of China show that rainfall events tend to be more concentrated both temporally and spatially under higher temperature. This suggests that warmer conditions not only increases the moisture holding capacity of the atmosphere thus increasing rain intensity, but also enhances the spatiotemporal concentration of rain events. The temperature-induced concentration enhancement in both space and time are robust, and do not depend on rain amount and duration. The spatial concentration of rainfall continues to increase with rising temperature, whereas the temporal concentration plateaus when temperature exceeds a certain threshold. However, this should be interpreted with caution, as the number of bins with temperature higher than 24°C is limited, and the sample size within each bin is small too.

More concentrated precipitation, in addition to a projected increase of extreme precipitation, would intensify flooding in a warmer world, causing more detrimental effects. The spatial and temporal concentration indices proposed in this study therefore provide important new metrics of precipitation characteristics that are highly relevant for evaluating flood risks in a changing climate. As the relationship between precipitation concentration and temperature may depend on the background climate, follow-up research should explore this topic across different climate regimes to test whether findings from this study may be transferable to other regions.

Acknowledgments. This study was supported by the National Natural Science Foundation of China (Grants 51779278, 52079151 to Dagang Wang) and the National Science Foundation (AGS-1659953 to Guiling Wang).

Data availability statement. The CLDAS temperature data are downloadable at the official website (http://tipex.data.cma.cn) after registration and login. The station precipitation data are owned by Ganzhou Hydrological Bureau and are not freely accessible in the public domain. The station data are accessible by sending an email to the corresponding author (wangdaga@mail.sysu.edu.cn) with a reasonable request.

REFERENCES


