AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization

ALAN J. CIMORELLI,* STEVEN G. PERRY, + AKULA VENKATRAM, # JEFFREY C. WEIL, @ ROBERT J. PAINE, & ROBERT B. WILSON,** RUSSELL F. LEE, +/+, WARREN D. PETERS, ## AND ROGER W. BRODE@@

*U.S. Environmental Protection Agency Region 3, Philadelphia, Pennsylvania
†Air Resources Laboratory, NOAA, and National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
‡College of Engineering, University of California, Riverside, Riverside, California
@Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
&&ENSR International, Westford, Massachusetts
**U.S. Environmental Protection Agency Region 10, Seattle, Washington
++Charlotte, North Carolina
##OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
@@MACTEC Federal Programs, Inc., Durham, North Carolina

(Manuscript received 21 January 2004, in final form 6 October 2004)

ABSTRACT

The formulation of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee’s applied air dispersion model is described. This is the first of two articles describing the model and its performance. Part I includes AERMOD’s characterization of the boundary layer with computation of the Monin–Obukhov length, surface friction velocity, surface roughness length, sensible heat flux, convective scaling velocity, and both the shear- and convection-driven mixing heights. These parameters are used in conjunction with meteorological measurements to characterize the vertical structure of the wind, temperature, and turbulence. AERMOD’s method for considering both the vertical inhomogeneity of the meteorological characteristics and the influence of terrain are explained. The model’s concentration estimates are based on a steady-state plume approach with significant improvements over commonly applied regulatory dispersion models. Complex terrain influences are provided by combining a horizontal plume state and a terrain-following state. Dispersion algorithms are specified for convective and stable conditions, urban and rural areas, and in the influence of buildings and other structures. Part II goes on to describe the performance of AERMOD against 17 field study databases.

1. Introduction

Major developments in an improved understanding of the planetary boundary layer (PBL) began in the 1970s (Wyngaard 1988). One milestone involved numerical simulations by Deardorff (1972), revealing the convective boundary layer’s (CBL’s) vertical structure and important turbulence scales. Insights into dispersion followed from laboratory experiments, numerical simulations, and field observations (Briggs 1988; Lamb 1982; Weil 1988a). For the stable boundary layer (SBL), advancements occurred more slowly. However, a sound theoretical/experimental framework for surface layer dispersion and approaches for elevated sources existed by the mid-1980s (Briggs 1988; Venkatram 1988).

During the 1980s, researchers began to apply this information to applied dispersion models. These included eddy-diffusion techniques for surface releases, statistical theory and PBL scaling for dispersion parameter estimation, and a new probability density function (PDF) approach for the CBL. Much of this work was reviewed and promoted in workshops (Weil 1985), revised texts (Pasquill and Smith 1983), and in short courses and monographs (Nieuwstadt and van Dop 1982; Venkatram and Wyngaard 1988). By the mid- to late 1980s, new applied dispersion models had been developed, including the Power Plant Siting Program (PPSP) model (Weil and Brower 1984), Second-Order Closure Integrated Puff (SCIPUFF) (Sykes et al. 1996), Operationelle Meteorologiske Luftkvalitetsmodeller
2. Meteorological preprocessor (AERMET)

The growth and structure of the PBL is driven by the fluxes of heat and momentum, which, in turn, depend upon surface effects. The depth of this layer and the dispersion of pollutants within it are influenced on a local scale by surface characteristics such as surface roughness, albedo, and available surface moisture. As with models like HPDM (Hanna and Paine 1989; Hanna and Chang 1993) and CTDPLUS (Perry 1992), AERMOD utilizes surface and mixed-layer scaling to characterize the structure of the PBL. AERMOD’s meteorological preprocessor (AERMET) requires, as input, surface characteristics, cloud cover, a morning upper-air temperature sounding, and one near-surface measurement of wind speed, wind direction, and temperature. With this, the model computes the friction velocity, Monin–Obukhov length, convective velocity scale, temperature scale, mixing height, and surface heat flux. In a manner similar to models like CTDPLUS and HPDM these scaling parameters are used to construct vertical profiles of wind speed, lateral and vertical turbulence, potential temperature gradient, and potential temperature. Extensive independent evaluations of these scaling parameters and vertical profiles have not been performed for urban and complex terrain situations other than those accomplished in the many references cited. However, evaluations of the overall model have shown that these parameterizations lead to estimates of plume concentration that compare well with a wide variety of field observations (Part II).

a. Derived parameters in the CBL

During convective conditions, AERMET characterizes the state of the PBL by first estimating the sensible heat flux (H) with a simple energy balance approach (Oke 1978), then the friction velocity (u_*) and the Monin–Obukhov length (L). With these parameters AERMET can estimate the mixing height (z_*) and the convective velocity scale (w_*).

The expression used for u_* (Panofsky and Dutton 1984) is

$$u_* = \frac{k u_{ref}}{\ln(z_{ref}/z_0) - \Psi_m(z_{ref}/L) + \Psi_m(z_0/L)},$$

where k is the von Kármán constant, u_{ref} is the wind speed at reference height, z_{ref} is the lowest surface layer measurement height for wind, z_0 is the roughness length, and Ψ_m is defined by Panofsky and Dutton (1984) for the CBL and by van Ulden and Holtslag (1985) for the SBL. Note that braces are used throughout this paper to denote the functional form of variables. Assuming neutral conditions, u_* and L are initialized using Eq. (1) and L is defined as follows (Wyngaard 1988):

This paper describes 1) algorithms for estimating PBL parameters, 2) algorithms for developing vertical meteorological profiles, 3) an approach for handling PBL inhomogeneity, 4) the approach used to establish the influence of terrain, 5) the general structure of the dispersion model, 6) the dispersion algorithms, 7) the building downwash algorithms, and 8) treatment of the urban boundary layer. Perry et al. (2005, hereinafter Part II) discusses the performance evaluation of AERMOD against 17 experimental databases.
where g is the acceleration of gravity, c_p is the specific heat at constant pressure, ρ is the density, and T_{ref} is the ambient temperature (K) that is representative of the surface layer. Final values for u_s and L are found by iterating Eqs. (1) and (2) until convergence. The convective velocity scale (w_a) is estimated from (Deardorff 1970)

$$w_a = \left(\frac{gH\bar{z}_c}{\rho c_p T_{\text{ref}}} \right)^{1/3},$$

(3)

where \bar{z}_c is the convective mixing height.

Assuming no measurements, \bar{z}_c is calculated with a simple one-dimensional energy balance model (Carson 1973), as modified by Weil and Brower (1983). In addition, a mechanical mixing height (z_m) is estimated from an empirically based expression (Venkatram 1980) as

$$z_m = 2300u_s^{3/2},$$

(4)

where the constant 2300 has units of ($s^{-1/2}$).

For CBL dispersion calculations, the mixing height (z_i) is defined as the larger of z_m and z_{ic}.

b. Derived parameters in the SBL

Because estimates of the sensible heat flux using Oke’s (1978) approach are unreliable in the SBL, Eqs. (1) and (2) are not used. Rather, using Venkatram’s (1980) observation that the temperature scale (θ_s), which sets the “level” of the temperature fluctuations in the surface layer, varies little during the night, u_s can be determined from

$$\theta_s = -H/\rho c_p u_s;$$

(5)

$\theta_s = 0.09(1 - 0.5n^2)$ is taken from van Ulden and Holtslag (1985), where n is the fractional cloud cover and the constant 0.09 has units of kelvins.

By combining Eq. (2) with Eq. (5), L can be written as

$$L = \frac{T_{\text{ref}}}{k \theta_s u_s^2}.$$

(6)

Using Panofsky and Dutton’s (1984) expression for the wind speed profile, that is,

$$u = \frac{u_s}{k} \left[\ln \left(\frac{z}{z_0} \right) + \beta_m \frac{z_{\text{ref}}}{L} \right],$$

(7)

where $\beta_m = 5$, the solution for u_s is found by substituting Eq. (6) into Eq. (7) (Hanna and Chang 1993; Perry 1992).

Having computed u_s and θ_s, AEROMET calculates the surface heat flux from Eq. (5). Last, because there is, by definition, no convective component in the SBL, the total mixing depth z_i is computed as the time-smoothed (Cimorelli et al. 2003) mechanical mixing depth z_{im} [Eq. (4)].

3. Vertical structure of the PBL

AERMOD estimates meteorological profiles using both measurements and similarity parameterizations [i.e., AERMOD uses the shape of the similarity profiles to interpolate between adjacent vertical measurements (Cimorelli et al. 2003)]. AERMOD’s concentration formulations consider the effects from vertical variations in wind, temperature, and turbulence. These profiles are represented by equivalent (effective) values constructed by averaging over the layer through which plume material travels directly from the source to receptor (Cimorelli et al. 2003). The effective parameters are denoted by a tilde throughout the document (e.g., effective wind speed is denoted by \tilde{u}).

a. Wind speed and direction

The profile equation for wind speed has the familiar logarithmic form:

$$u(z) = u(z = 7z_0) \left(\frac{z}{7z_0} \right) \quad \text{for} \quad z < 7z_0,$$

$$u(z) = \frac{u_s}{k} \left[\ln \left(\frac{z}{z_0} \right) + \Psi_m \left(\frac{z}{L} \right) \right. + \left. \Psi_m \left(\frac{z_0}{L} \right) \right] \quad \text{for} \quad 7z_0 \leq z \leq z_f,$$

and

$$u(z) = u(z = z_f) \quad \text{for} \quad z > z_f,$$

(8)

where $7z_0$ represents an approximate height of roughness elements below which the profile is assumed to be linear.

Wind direction is assumed to be constant with height both above the highest and below the lowest measurement and to vary linearly between measurements.

b. Potential temperature gradient

In the CBL $\partial \theta/\partial z$ is taken to be zero, in the stable interfacial layer it is estimated from the morning temperature sounding, and it is assumed to equal 0.005 K m$^{-1}$ above, as suggested by Hanna and Chang (1991). Measurements (e.g., Clarke et al. 1971) of profiles throughout the day lend support to this approach.

In the SBL’s first 100 m, $\partial \theta/\partial z$ is estimated from Dyer (1974) and Panofsky and Dutton (1984) as

$$\frac{\partial \theta}{\partial z} = \frac{\theta_s}{k(2)} \left[1 + 5 \left(\frac{z = 2}{L} \right) \right] \quad \text{for} \quad z \leq 2 \text{ m}$$
and
\[
\frac{\partial \theta}{\partial z} = \frac{\theta_s}{k} \left(1 + \frac{z}{L} \right) \]
for \(2 \text{ m} \leq z \leq 100 \text{ m}.
\]

(9)

Above 100 m the potential temperature gradient is taken from Stull (1983) and van Ulden and Holtslag (1985) as
\[
\frac{\partial \theta}{\partial z} = \frac{\partial \theta(z_{mx})}{\partial z} \exp \left[-\left(\frac{z - z_{mx}}{0.44z_{io}} \right) \right],
\]
where \(z_{mx} = 100 \text{ m}, \ z_{io} = \max(z_{im}, \ 100 \text{ m})\), and the constant 0.44 is taken from measurements (Andre and Mahrt 1982). Last, AERMOD limits \(\partial \theta/\partial z\) to a minimum of 0.002 K m\(^{-1}\) (Paine and Kendall 1993).

c. Vertical turbulence

In the CBL, vertical turbulence contains both a mechanical \((\sigma_{vm} \propto u^*_w)\) and a convective \((\sigma_{vc} \propto w^*_c)\) component, with the total vertical turbulence \((\sigma^2_{vt})\) given by
\[
\sigma^2_{vt} = \sigma^2_{vc} + \sigma^2_{vm},
\]
while in the SBL \(\sigma^2_{vt} = \sigma^2_{wm}\). These forms are similar to one introduced by Panofsky et al. (1977) and are included in other dispersion models (e.g., Berkowicz et al. 1986; Hanna and Paine 1989; and Weil 1988a).

The convective portion \((\sigma^2_{vc})\) of the total variance is calculated as
\[
\sigma^2_{vc} = 1.6 \left(\frac{z}{z_{ic}} \right)^{2/3} w^*_c^2 \quad \text{for} \quad z \leq 0.1 z_{ic},
\]
\[
\sigma^2_{vc} = 0.35 w^*_c^2 \quad \text{for} \quad 0.1 z_{ic} < z \leq z_{ic},
\]
and
\[
\sigma^2_{vc} = 0.35 w^*_c^2 \exp \left[-\frac{6(z - z_{ic})}{z_{ic}} \right] \quad \text{for} \quad z > z_{ic},
\]
where the first expression is taken from Panofsky et al. (1977) and the second from Hicks (1985). The third expression permits \(\sigma^2_{vc}\) to smoothly decay to zero well above \(z_{ic}\).

The mechanical turbulence \((\sigma_{vm})\) is assumed to consist of contributions from the current boundary layer \((\sigma_{vml})\) and residual turbulence from the previous day’s boundary layer \((\sigma_{vmr})\), such that
\[
\sigma^2_{vm} = \sigma^2_{vml} + \sigma^2_{vmr}.
\]

(13)

The expression for \(\sigma_{vml}\), following Brost et al. (1982), is
\[
\sigma_{vml} = 1.3 u^*_a \left(1 - \frac{z}{z_i} \right)^{1/2} \quad \text{for} \quad z < z_i,
\]
and
\[
\sigma_{vml} = 0.0 \quad \text{for} \quad z \geq z_i,
\]
where \(\sigma^2_{vml} = 1.3 u^*_a \) at \(z = 0\) is consistent with Panofsky et al. (1977). In the absence of measurements above \(z_i\), \(\sigma_{vmr}\) is taken from (Briggs 1973) to be \(0.02 u[z_i]\).

d. Lateral turbulence

In the CBL the total lateral turbulence is also assumed to be a combination of a mechanical \((\sigma_{lm})\) and a convective \((\sigma_{lc})\) portion, such that
\[
\sigma^2_{lt} = \sigma^2_{lc} + \sigma^2_{lm}.
\]

(15)

In the mixed layer,
\[
\sigma^2_{lc} = 0.35 w^*_a^2,
\]
which is supported by the Minnesota (Readings et al. 1974; Kaimal et al. 1976) and Ashchurch, United Kingdom (Caughey and Palmer 1979), datasets. Consistent with measurements reported by Hanna (1983), a minimum value of 0.5 m \(\text{s}^{-1}\) is assumed for \(\sigma^2_{lc}\) above \(z_i\).

AERMOD assumes that \(\sigma^2_{lm}\) varies linearly with height between its value at the surface and an assumed residual value at \(z_{im}\) as is suggested by field observations (e.g., Brost et al. 1982). The value of \(\sigma^2_{lm}\) at \(z_{im}\) is assumed to persist at higher levels. The profile for lateral mechanical turbulence is calculated as
\[
\sigma^2_{lm} = \left(\frac{\sigma^2_{lm(z_{im})} - \sigma^2_{lm}}{z_{im}} \right) z + \sigma^2_{lm} \quad \text{for} \quad z \leq z_{im},
\]
and
\[
\sigma^2_{lm} = \sigma^2_{lm(z_{im})} \quad \text{for} \quad z > z_{im}.
\]

(17)

where \(\sigma^2_{lm(z_{im})} = \min(\sigma^2_{lm}, 0.25 \text{ m}^2 \text{s}^{-2})\) and \(\sigma^2_{lm}\) is equal to 3.6\(u^*_a^2\) (Panofsky and Dutton 1984; Izumi 1971; Hicks 1985). In the SBL the turbulence is exclusively mechanical \((\sigma_{cm})\).

4. General form of the AERMOD dispersion model with terrain

AERMOD simulates a plume, in elevated terrain, as a weighted sum of concentrations from two limiting states: a horizontal plume (terrain impacting) and a terrain-following plume. Each plume state is weighted using the concepts of the critical dividing streamline and a receptor-specific terrain height scale \((h_r)\) (Venkatram et al. 2001; Cimorelli et al. 2003).

The general concentration equation is
\[
C_T[x_r, y_r, z_r] = f C_{c,s}[x_r, y_r, z_r] + (1 - f) C_{c,p}[x_r, y_r, z_p],
\]

(18)

where \(C_T[x_r, y_r, z_r]\) is the total concentration, \(C_{c,s}[x_r, y_r, z_r]\) is the contribution from the horizontal plume (subscripts \(c\) and \(s\) refer to convective and stable conditions, respectively), \(C_{c,p}[x_r, y_r, z_p]\) is the contribution from the terrain-following plume, \(f\) is the weighting factor, \(\{x_r, y_r, z_r\}\) is the receptor coordinate, \(z_p (= z_r - z_i)\) is the re-
Receptor height above local ground, and z_r is the local terrain height. Figure 1 illustrates the relationship between the actual plume and AERMOD’s characterization of it.

The weighting of the two plume states depends on the amount of mass residing in each state. This mass partitioning is based on the relationship between the critical dividing streamline height (H_c) (Sheppard 1956; Snyder et al. 1985) and the vertical concentration distribution at a receptor. Complex terrain in often characterized by a number of irregularly shaped hills. Venkatram et al. (2001) first proposed the idea that H_c could be calculated using a receptor-specific height scale (h_r) that represents the height of a single isolated hill, which would act to affect the flow at the receptor in a manner similar to the real terrain. In this way, the participating of the plume mass into the two states is receptor specific. For a receptor at elevation z_r and an effective plume height of h_r, the height of the terrain-following state, at that receptor, is $z_r + h_r$. For streamlines to reach the terrain-following height the actual terrain that influences the flow at the receptor must extend up to or above this height; in this case, $h_c = z_r + h_r$. If the actual terrain is less than $z_r + h_r$ then h_c is set to the actual terrain height that causes the maximum vertical displacement of the plume above the receptor. Therefore, for any receptor, h_c is defined as the minimum of the highest actual terrain and the terrain-following height at that receptor. The dividing streamline height is computed using the same integral formula found in CTDMPLUS (Perry 1992), with h_c substituted for hill height.

The fraction of the plume mass below H_c (i.e., φ_p) is computed as

\[\varphi_p = \frac{\int_0^{H_c} C_i(x_r, y_r, z) \, dz}{\int_0^\infty C_i(x_r, y_r, z) \, dz} . \]

In convective conditions, $H_c = 0$ and $\varphi_p = 0$.

As described by Venkatram et al. (2001), the plume-state weighting factor f is given by $f = 0.5(1 + \varphi_p)$. When the plume is entirely below H_c ($\varphi_p = 1.0$ and $f = 1.0$) the concentration is determined by the horizontal plume only. When the plume is entirely above the critical dividing streamline height or when the atmosphere is convective, $\varphi_p = 0$ and $f = 0.5$. That is, during convective conditions the concentration at an elevated receptor is the average of the contributions from the two states. As plumes above H_c encounter terrain and are deflected vertically, there is also a tendency for plume material to approach the terrain surface and to spread out around the sides of the terrain. To simulate this, concentration estimates always contain a component from the horizontal state. Evaluation of the model against field observations supports this assumption (Part II). Therefore, under no conditions is the plume allowed to completely approach the terrain-following state. For flat terrain, the contributions from the two states are equal in value and are equally weighted.

5. AERMOD concentration predictions in the SBL

During stable conditions (i.e., stable and neutral stratifications when $L > 0$), AERMOD estimates concentrations from

\[C_n(z_r, y_r, z) = \frac{Q}{\sqrt{2\pi\mu\sigma_{zs}}} \cdot \frac{F_y}{F_y} \times \sum_{m=-\infty}^{\infty} \exp \left[\frac{-(z - h_{zs} - 2mz_{eff})^2}{2\sigma_{zs}^2} \right] + \exp \left[\frac{-(z + h_{zs} + 2mz_{eff})^2}{2\sigma_{zs}^2} \right] , \]

where z_{eff} is the effective mechanical mixing height, σ_{zs} is the total vertical dispersion, h_{zs} is the plume height (Weil 1988b; Cimorelli et al. 2003), and F_y is the lateral distribution functions.

Above the mechanical mixing layer turbulence is expected to be small. AERMOD is designed with an effective mixing lid z_{eff} that retards but does not prevent plume material from spreading into this region of low turbulence. When the plume is below z_{inv} but its “upper edge” (plume height plus 2.15z_{inv}) reaches z_{inv}, z_{eff} is allowed to increase, maintaining its position relative to the plume.

The lateral dispersion function is defined as
Lateral dispersion is estimated from Taylor (1921), such that
\[\sigma_y = \left(\frac{\bar{\sigma}_x \bar{u}}{\bar{u}} \right) \left(1 + \frac{x \bar{u}}{2T_{L_x}} \right)^{\rho}, \]
where \(p = 0.5 \), \(\bar{u} \) is the wind speed, \(\bar{\sigma}_x \) is lateral turbulence velocity [Eq. (15)], and \(T_{L_x} \) is the Lagrangian integral time scale. Application of Eq. (22) in a preliminary version of AERMOD yielded poor comparisons with data from the Prairie Grass Experiment (Barad 1958); the lateral spread was not well matched. In response, the lateral dispersion expression was reformulated to better fit the data.

From Venkatram et al. (1984) \(T_{L_y} \) is written as \(l \bar{\sigma}_{x_r} \) where \(l \) is a lateral turbulent length scale. This allows Eq. (22) to be written in terms of the nondimensional downwind distance \(X \) and a nondimensional height scale \(\delta \):
\[\sigma_y = \frac{\bar{\sigma}_x x}{\bar{u}(1 + \delta X)^{p}}, \]
where \(X = \bar{\sigma}_x x \bar{u} / \bar{u}, \) and \(\delta = z / l \).

Using a subset of stable and convective cases from the Prairie Grass Experiment, Eq. (23) (based on Taylor 1921) produced the best \(\sigma_y \) comparisons with \(\delta \) and \(p \) set equal to 78, and 0.3, respectively. In an independent comparison with the full dataset (Fig. 2), Eq. (23) was found to fall within this widely scattered data, yet it tended toward the lower end of the distribution of measured dispersion. More important, good agreement between AERMOD concentration predictions and Prairie Grass observations was found (Part II).

In the SBL, the vertical dispersion (\(\sigma_z \)) is assumed to be composed of contributions from an elevated (\(\sigma_{zes} \)) and near-surface (\(\sigma_{ges} \)) component. Lacking a strong physical justification otherwise, for \(h_{es} < z_p \), a simple linear interpolation between the two components is assumed. That is,
\[\sigma_{zs} = \left(1 - \frac{h_{es}}{z_p} \right) \sigma_{ges} + \left(\frac{h_{es}}{z_p} \right) \sigma_{zes}. \]
where \(h_{es} \) is the plume height, and for \(h_{es} \geq z_p, \sigma_{zs} \) is set equal to \(\sigma_{zes} \).

The elevated component follows Taylor, such that
\[\sigma_{zes} = \frac{\bar{\sigma}_{wT} T}{2 \left(\frac{1}{2} \frac{N^2}{0.36h_{es}} + 0.27 \bar{\sigma}_{wT} \right)}^{1/2}, \]
where \(\bar{\sigma}_{wT} \) is the vertical turbulence due to mechanical mixing [Eq. (11)].

Writing the Lagrangian time scale as \(T_{L_z} = l / \bar{\sigma}_{wT} \) (Venkatram et al. 1984) and interpolating \(l / \bar{\sigma}_{wT} \) between its neutral \((l_n = 0.36h_{es}) \) and stable \((l_s = 0.27\bar{\sigma}_{wT}/N) \) limits allows Eq. (25) to be rewritten as
\[\sigma_{zes} = \frac{\bar{\sigma}_{wT} T}{2 \left(\frac{1}{2} \frac{N^2}{0.36h_{es}} + 0.27 \bar{\sigma}_{wT} \right)}^{1/2}, \]
where \(N \) is the Brunt–Väisälä frequency, that is, the frequency of the particle oscillation about its equilibrium position.

The surface component (\(\sigma_{ges} \)) is calculated as (Venkatram 1992)
\[\sigma_{ges} = \frac{\bar{\sigma}_{wT} T}{2 \left(\frac{1}{2} \frac{N^2}{0.36h_{es}} + 0.27 \bar{\sigma}_{wT} \right)}^{1/2}. \]
In addition to ambient turbulence, plume buoyancy contributes to the total dispersion. Buoyancy-induced dispersion is calculated following Pasquill (1976) and Weil (1988b) as
\[\sigma_b = \frac{0.4 \Delta h}{\sqrt{2}}, \]
where \(\Delta h \) is the stable plume rise above stack top (Cimorelli et al. 2003). Total dispersion is calculated by adding \(\sigma_b \) in quadrature, to \(\sigma_y \) and also to \(\sigma_{zs} \) (Pasquill and Smith 1983).

6. AERMOD concentration predictions in the CBL

Unlike the SBL, in the CBL (i.e., convective and neutral stratifications when \(L < 0 \)), the vertical velocity \((w) \) distribution is positively skewed and results in a
non-Gaussian vertical concentration distribution (Weil et al. 1997; Lamb 1982) and a general descent of the plume centerline for an elevated nonbuoyant source (Lamb 1982; Weil 1988a). The vertical spread in concentration is modeled using a bi-Gaussian distribution, a good approximation to laboratory convection tank data (Baerentsen and Berkowicz 1984). In contrast, the lateral concentration distribution assumes a Gaussian shape, consistent with the lateral velocity distribution (Lamb 1982).

For buoyant releases AERMOD addresses distance-dependent plume rise. A “direct” source is defined to treat that portion of the plume’s mass that is transported directly to the ground, plus all subsequent reflections of this direct mass. For plume segments initially rising in updrafts, an “indirect” or modified-image source is included to address the initial reflection at \(z_i \) and all subsequent reflections at \(z = 0 \) and \(z_f \) of this indirect mass. A plume-rise component is added to delay the downward dispersion of the indirect source material from the CBL top; this mimics the tendency of buoyant plumes to remain temporarily near \(z_i \) and resist downward mixing. Additionally, a “penetrated” source (above the CBL top) is included to account for material that initially penetrates the elevated inversion while allowing for it to subsequently reentrain into the growing CBL. The fraction \(f_p \) of the source material that does not penetrate is

\[
f_p = \begin{cases}
0 & \text{if } \Delta h_i < 0.5 \Delta h_{eq}, \\
1 & \text{if } \Delta h_i > 1.5 \Delta h_{eq}, \\
\frac{\Delta h_i}{\lambda} - 0.5 & \text{if } 0.5 \Delta h_{eq} \leq \Delta h_i \leq 1.5 \Delta h_{eq},
\end{cases}
\]

where \(\Delta h_i = z_i - h_i \), and \(h_{eq} \) is the equilibrium plume rise in a stable environment (Weil et al. 1997).

The total concentration (\(C \)) in the CBL is found by summing the contribution from the three sources. For the horizontal plume state,

\[
C(x, y, z) = C_d(x, y, z) + C_i(x, y, z) + C_p(x, y, z),
\]

where \(C_d \), \(C_i \), and \(C_p \) are the contributions from the direct, indirect, and penetrated sources, respectively. This three-plume concept is shown schematically in Fig. 3. Similarly, the concentration for the terrain-following state has the form of Eq. (30), but with \(z_i \) replaced by \(z_p \).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{AERMOD’s three-plume treatment of the CBL.}
\end{figure}

\[C_d = \frac{Q f_d}{\sqrt{2\pi u}} F \sum_{j=1}^{2} \sum_{m=0}^{\infty} \frac{\lambda_j}{\sigma^2} \left[\exp \left(- \frac{(z - \Psi_{dj})^2}{2\sigma^2} \right) \right], \quad (31) \]

where \(\Psi_{dj} = h_k + \Delta h_d + \bar{w}_j \bar{u} \) is the plume height, \(\bar{u} \) is the effective wind speed, \(F \) is the lateral dispersion coefficient, and \(\Delta h_d \) is the plume rise (Briggs 1984). With \(z = z_i \) and \(z_p \), Eq. (31) estimates concentrations for the horizontal or terrain-following plume, respectively. The subscript \(j \) is equal to 1 for updrafts and 2 for downdrafts with \(\lambda \), defined as the weighting coefficient for each distribution. Equation (31) uses an image plume to handle ground reflections by assuming a source at \(z = -h_i \). All subsequent reflections are handled by sources at \(z = 2z_i - h_k, -2z_i - h_k, 4z_i + h_k, -4z_i - h_k \), and so on.

The lateral dispersion coefficient (\(\sigma_{ij} \)), in the equation for \(F \), is estimated using the same approach that is used for the SBL [Eqs. (22) and (23)].

The vertical dispersion coefficient (\(\sigma_{i\bar{u}} \)) is composed of an elevated (\(\sigma_{i\bar{u}} \)) and surface (\(\sigma_{i\bar{u}} \)) portion, such that

\[\sigma_v^2 = \sigma_{i\bar{u}}^2 + \sigma_{i\bar{u}}^2, \quad (32) \]

The elevated component is obtained from Weil et al. (1997) as

\[\sigma_{i\bar{u}} = \alpha_h \frac{\sigma_{i\bar{u}} \bar{u}}{\bar{u}}, \quad (33) \]

where \(\sigma_{i\bar{u}} \) is the standard deviation of the updraft (\(j = 1 \)) and downdraft (\(j = 2 \)) distributions of vertical wind speed. The coefficient \(\alpha_h = \text{min}(0.6 + 4\Psi_{dj}/z_p, 1.0) \) is designed to be 1.0 above the surface layer (\(\Psi_{dj} = 0.1z_i \)) and match Venkatram’s (1992) result for a surface source in neutral conditions. For the surface component,
\[\sigma_{zG} = b \left(1 - 10(\Psi_{\text{aj}}) (u_0/\tilde{u})^2 (x_0^2/L) \right), \] (34)

where \(b = 0.5 \). Above the surface layer, \(\sigma_{zG} \) is set to zero, while for a surface release, Eq. (34) reduces to the form suggested by Venkatram (1992) for vertical dispersion in the unstable surface layer, that is, \(\sigma_{zG} \approx (u_0/\tilde{u})^2 x_0^2/L \). The constant \(b \) was chosen to provide good agreement between the modeled and observed concentrations for the Prairie Grass Experiment data.

Total lateral and vertical dispersion, for all CBL plumes, are enhanced by plume buoyancy effects in the same manner as described for the SBL [Eq. (28)].

b. Indirect source contribution to concentrations in the CBL

The concentration due to the indirect source is calculated from

\[C_i(x, y, z) = \frac{Q_{ip}}{2\pi \sigma_{yC}} \sum_{j=1}^{\infty} \sum_{m=-1}^{\infty} \frac{\lambda_j}{\sigma_{jz}} \exp \left\{ -\frac{(z - \Psi_{ij} - 2mz_e)^2}{2\sigma_{jz}^2} \right\} \times \exp \left\{ \frac{(z - \Psi_{ij} + 2mz_e)^2}{2\sigma_{jz}^2} \right\}, \] (35)

where \(\sigma_{jz} \) and \(F_j \) are the same as defined for the direct source, the plume height \(\Psi_{ij} = \Psi_{\text{aj}} - \Delta h_i \), and \(\Delta h_i \), which delays vertical mixing to account for residual buoyancy in the plume at the top of the boundary layer, is given by

\[\Delta h_i = \left(\frac{2F_j \bar{u}}{\alpha_j u_0 \tilde{u} y_j / y_R} \right)^{1/2} \frac{x}{u_p}, \] (36)

where \(r_i \) and \(r_z \) are the plume half-widths in the lateral and vertical directions, \(u_p \) is the wind speed used for plume rise, and \(\alpha_i = 1.4 \) (see Weil et al. 1997).

c. Penetrated source contribution to concentration in the CBL

For the penetrated source, the vertical and lateral concentration distributions have a Gaussian form, such that

\[C_p(x, y, z) = \frac{Q(1 - f_p)}{\sqrt{2\pi \sigma_{zp}}} \sum_{m=-\infty}^{\infty} \exp \left\{ -\frac{(z - \bar{h}_p - 2mz_{\text{att}})^2}{2\sigma_{zp}^2} \right\} \times \exp \left\{ -\frac{(z + \bar{h}_p + 2mz_{\text{att}})^2}{2\sigma_{zp}^2} \right\}, \] (37)

where \(F_j \) is the same as defined for the SBL and \(z_{\text{att}} \) is the height of the upper reflecting surface in a stable layer (see section 6). The penetrated plume height \(\bar{h}_p \) is \(h_i + \Delta h_{eq} \) for \((f_p = 0) \), while for partial penetration \(\bar{h}_p = (h_i + z_e/2) + 0.75 \Delta h_{eq} \). The vertical dispersion coefficient \(\sigma_{zp} \) contains only a stable elevated component, Eq. (26), because this source is decoupled from the surface. However, for the penetrated source, Eq. (26) is applied with \(N \) set to zero because it must pass into or through the well-mixed CBL prior to reaching ground-level receptors.

7. Treatment of lateral plume meander

Plume meander is the slow lateral back-and-forth shifting of the plume in response to nondispersing lateral eddies that are larger than the plume. For time-averaged concentrations, meander has the effect of increasing the lateral spread of the actual plume’s distribution. Meander is treated by interpolating the concentrations that result from two limits of the horizontal distribution function \(F_i \)—the coherent plume limit \(F_{iC} \) (which assumes that the wind direction is distributed about a well-defined mean direction) and the random plume limit \(F_{iR} \) (which assumes that the plume has equal probability of moving in any direction). The estimated concentration is a weighted sum of the concentrations from these two limits, where the weighting is proportional to the horizontal energy in each of these states.

For the coherent plume, \(F_{iC} \) has the familiar Gaussian form

\[F_{iC} = \frac{1}{\sqrt{2\pi \sigma_{yC}}} \exp \left\{ -\frac{y^2}{2\sigma_{yC}^2} \right\}, \] (38)

while for the random limit \(F_{iR} \) is written as

\[F_{iR} = \frac{1}{2\pi x}, \] (39)

where \(x \) is the straight line distance from the source to the receptor.

To consider meander, the total concentration, on the order of 1 h, for stable or convective conditions \((C_{\text{ch}}) \), is determined as a weighted sum of the coherent \((C_{\text{ch}}) \) and random \((C_R) \) plume concentrations as

\[C_{\text{ch}} = C_{\text{ch}}(1 - \sigma_{yC}^2/\sigma_{yR}^2) + C_R(\sigma_{yC}^2/\sigma_{yR}^2); \] (40)

\(C_{\text{ch}} \) is computed from Eq. (20) in the SBL and from Eq. (30) in the CBL, with the lateral terms replaced by Eq. (38). Similarly, \(C_R \) is computed with the lateral terms replaced by Eq. (39). The weighting factor is the ratio of the random component of the horizontal wind energy \((\sigma_{yR}^2) \) to the total horizontal wind energy \((\sigma_{yC}^2) \).

The horizontal wind is composed of a mean component \(\bar{u} \), and random components \(\sigma_{yC} \) and \(\sigma_{yR} \). Thus, a measure of the total horizontal wind “energy” can be represented as

\[\sigma_{yR}^2 = 2\sigma_{yC}^2 + \bar{u}^2, \] (41)
where the mean wind \(\bar{u} = (\bar{u}^2 - 2\bar{\sigma}_u^2)^{1/2} \). The random component is initially \(2\bar{\sigma}_u^2 \) and becomes equal to \(\sigma_u^2 \) at large travel times when the mean wind is uncorrelated, as is seen in the following expression for \(\sigma_r^2 \):

\[
\sigma_r^2 = 2\bar{\sigma}_u^2 + \frac{u^2}{T_r} [1 - \exp(-x_r/\bar{u}T_r)],
\]

where \(T_r \) is an autocorrelation time scale that is set to 24 h for uncorrelated winds (Brett and Tuller 1991).

8. Building downwash

AERMOD incorporates the Plume Rise Model Enhancements (PRIME) algorithms to handle plumes that are affected by building wakes. A detailed description of PRIME’s formulation is found in Schulman et al. (2000). Conceptually, PRIME partitions plume mass between a cavity and wake region according to boundaries that are specified by the lateral and vertical separation streamlines. Dispersion of the mass that is initially captured within the cavity is based on building geometry and is assumed to be uniformly mixed. Beyond the cavity region, this mass is emitted into the wake where it is combined with uncaptured plume mass and dispersed at an enhanced rate (beyond ambient dispersion). In the wake, turbulence smoothly decays with distance, achieving ambient levels in the far field. Plume rise is estimated using a numerical model that includes effects from streamline deflection near the building, vertical wind speed shear, enhanced dilution from the turbulent wake, and velocity deficit.

A basic design tenet for incorporating PRIME into AERMOD was to be as faithful as possible to the PRIME formulation while ensuring that 1) AERMOD’s new dispersion regime is applied with PRIME, and 2) far beyond the wake region, concentrations approach AERMOD’s estimate. To ensure a smooth transition beyond the wake, the total concentration \(C_{\text{total}} \) is calculated as follows:

\[
C_{\text{total}} = \gamma C_{\text{prime}} + (1 - \gamma)C_{\text{AERMOD}},
\]

where \(C_{\text{prime}} \) is the concentration that is estimated using the PRIME algorithms with AERMOD-derived meteorological inputs and \(C_{\text{AERMOD}} \) is the concentration that is estimated using AERMOD without building effects. The weighting parameter \(\gamma \) is designed such that the contribution from the PRIME calculation decreases exponentially with vertical, lateral, and downwind distance from the wake boundaries. That is,

\[
\gamma = \exp \left[-\frac{(x - \sigma_w)^2}{2\sigma_w^2} \right] \exp \left[-\frac{(y - \sigma_w)^2}{2\sigma_w^2} \right] \exp \left[-\frac{(z - \sigma_w)^2}{2\sigma_w^2} \right],
\]

9. Dispersion characterization in the urban boundary layer

Although urban surface characteristics influence the boundary layer parameters at all times, the thermal effects of the urban area on the structure of the boundary layer is largest at night and relatively absent during the day (Oke 1998). In built-up areas a weak “convective like” boundary layer forms during nighttime hours when stable rural air flows onto a warmer urban surface. AERMOD accounts for this by enhancing the vertical turbulence beyond that found in the nighttime rural boundary layer. A representative convective velocity scale is defined from the urban heat flux \((H_u) \) and urban mixed-layer height \((z_m) \).

Flux \(H_u \) is calculated from

\[
H_u = \alpha \rho u^2 \Delta T_{u-r},
\]

which is analogous to the bulk transfer parameterization of heat flux over a homogeneous surface (e.g., Businger 1973), with \(\alpha \) as the “bulk” transfer coefficient. Because the urban–rural temperature difference \(\Delta T_{u-r} \) has a maximum value on the order of 10°C, and with light winds \(u_o \) on the order of 0.1 m s\(^{-1}\), \(\alpha \) should have a maximum value on the order of 0.1 in the city center. Assuming a linear variation of \(\alpha \) from 0 at the edge of the urban area to about 0.1 at the center of the urban area results in an areal average of approximately 0.03. This value of \(\alpha \) yields very good concentration comparisons between AERMOD and the Indianapolis, Indiana, data (Part II). Here, \(\Delta T_{u-r} \), used to estimate \(H_u \), is empirically based on data from Oke (1973, 1982) for a number of Canadian cities with populations from 1000 to 2 000 000. These data were collected during conditions of clear skies, light winds, and low humidities, and represent periods of expected maximum urban effect. An empirical fit to these data yields

\[
\Delta T_{u-r} = \Delta T_{\text{max}} \left[0.1 \ln(P/P_o) + 1.0 \right],
\]

where \(\Delta T_{\text{max}} = 12^\circ \mathrm{C}, P_o = 2 000 000, \) and \(P \) is the population of the modeling domain.

Empirical evidence presented in Oke (1973, 1982) and Venkatram (1978) suggests that \(z_{iuo} = \rho_i u_o^{1/4} \), such that

\[
z_{iuo} = z_{iuo} (P/P_o)^{1/4},
\]

where \(z_{iuo} \) is the boundary layer height corresponding to \(P_o \).

Hanna and Chang (1991) report lidar measurements from the Indianapolis tracer study for nocturnal conditions. While the mixing heights at night range from 100 to 500 m, they were generally around 400 m during
clear, calm conditions. Using 400 m for z_{wu} in Eq. (47), and the Indianapolis population of 700 000, the value of z_{wu} is computed to be 5 00 m. This is not inconsistent with measurements by Bornstein (1968) in New York, New York.

The (nighttime urban) convective velocity scale is computed by substituting z_{wu} and H_r into the definition equation for w_u (Deardorff 1970), such that

$$w_u = \left(\frac{g}{\rho_p} \frac{z_{wu} u_*}{\mu_u} \right)^{1/3}. \tag{48}$$

Enhanced vertical turbulence in the urban boundary layer is computed using Eq. (11) with Eq. (48) used for the convective velocity scale. With enhanced turbulence, vertical dispersion is calculated from Eq. (26).

10. Summary

This paper presents a comprehensive description of the AERMOD dispersion model formulations, including AERMOD’s characterization of the boundary layer, the representative terrain used to influence flow, and the specification of model dispersion algorithms for both convective and stable conditions in urban and rural areas. A notable strength of AERMOD’s formulations, particularly in the characterization of the boundary layer, lies in its reliance on previously successful modeling approaches that have been established in the literature, coupled with the developers’ efforts to avoid major discontinuities that are often found in atmospheric dispersion models. The performance of this model has been evaluated, with results documented in Part II.

Acknowledgments. The authors recognize the significant contributions of Mr. James Paumier of Pacific Environmental Services, Inc., in developing the AERMET preprocessor. This project was made possible through the continued support of Mr. Joe Tikvart, formally of EPA’s Office of Air Quality Planning and Standards (OAQPS), and Mr. Frank Schiermeier, formerly of NOAA’s Atmospheric Sciences Modeling Division. We thank the many scientists who participated in peer reviews and beta testing, especially Dr. Steven Hanna, Dr. Gary Briggs, and Mr. John Irwin. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency’s peer review and administrative review policies for approval for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

REFERENCES

Baerentsen, J. H., and R. Berkowicz, 1984: Monte Carlo simula-
Berkowicz, R. J., R. Olesen, and U. Torp, 1986: The Danish Gaussian air pollution model (OLM): Description, test and sensitivi-
Briggs, G. A., 1973: Diffusion estimation for small emissions. Air Resources Atmospheric Turbulence and Diffusion Laboratory, Environmental Research Laboratory, NOAA, 1973 An-
nual Meeting Air and Waste Management Association, Pitts-
burgh, PA, Air and Waste Management Association, 1–27.
Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable boundary layer for Rayleigh convec-
——, 1972: Numerical investigation of neutral and unstable plan-
Hanna, S. R., 1983: Lateral turbulence intensity and plume me-
——, and R. J. Paine, 1989: Hybrid Plume Dispersion Model...

—, and —, 1993: Hybrid Plume Dispersion Model (HPDM), improvements and testing at three field sites. Atmos. Environ., 27A, 1491–1508.

—, 1992: Updating the ISC model through AERMIC. Preprints,