Further remarks concerning "Limits to certainty"

C. Levert

Royal Netherlands Meteorological Institute

12 October 1959

I regret very much having made a mistake in my earlier comments [1] on Gleeson's papers [2] con-
cerning limits to certainty and prediction. The editor has offered me the present opportunity to make a correction, and I am glad to state that this correction does not alter the general meaning of those comments.

That part of the text [1] starting near the top of the right column on page 214 and ending at the bottom of that column should be altered as follows:

$$S = N \sum_{i=1}^{k} \left(1 - \frac{n_i}{N}\right)^2 + \frac{1}{N} \sum_{i\neq j} n_i n_j = (k - 1)N,$$

irrespective of the values of n_i. This is also the maximum value of S for fixed $N = \sum_{i} n_{ij}$ and k, which is reached if only the cells of the principal diagonal of the $k \times k$ contingency table are filled. The "significance" of this computed S, and hence of the association between the variables x and y, turns out to be independent of the way in which the values of n_i are distributed over the k cells of the principal diagonal. In this connection, the difference between the x^2 test and the Schelling test is stressed.

Finally, I would like to call attention to a paper by Dr. Pawlik [3]. It was he who drew my attention to the mistake corrected above.

REFERENCES