Observations of Vortex Rossby Waves Associated with a Mesoscale Cyclone*

CÉDRIC P. CHAVANNE, † PIERRE FLAMENT, AND DOUGLAS S. LUTHER
School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

KLAUS-WERNER GURGEL
Institute of Oceanography, University of Hamburg, Hamburg, Germany

(Manuscript received 27 April 2010, in final form 25 June 2010)

ABSTRACT

Short-wavelength \((L \approx 100 \text{ km})\) Rossby waves with an eastward zonal phase velocity were observed by high-frequency radio Doppler current meters and moored ADCPs west of Oahu, Hawaii, during spring 2003. They had Rossby numbers \(\text{Ro} = |\zeta|/|f| = O(1)\), periods of 12–15 days, and phase speeds of 8–9 cm s\(^{-1}\), and they were surface trapped with vertical \(e\)-folding scales of 30–170 m. They transferred horizontal kinetic energy to the background flow of a mesoscale cyclone lying 160–190 km west of Oahu, revealed by altimetry. The waves approximately satisfied the dispersion relation of vortex Rossby waves propagating through the radial gradient of potential vorticity associated with the cyclone. Vertical shear of the background currents may also affect wave propagation. Theoretical studies have shown that vortex Rossby waves provide a mechanism by which perturbed vortices axisymmetrize and strengthen and may be important to the dynamics of oceanic vortices.

1. Introduction

Waves propagating through the radial gradient of the potential vorticity field associated with vortices are called vortex Rossby waves (VRW), and they were first proposed to describe hurricane spiral bands (MacDonald 1968). VRW theory was subsequently developed to understand the response of atmospheric cyclones to asymmetric perturbations. VRWs provide a mechanism by which perturbed vortices axisymmetrize and strengthen (Montgomery and Kallenbach 1997; Möller and Montgomery 1999; McWilliams et al. 2003; Graves et al. 2006), and remain vertically aligned when subjected to vertical shear perturbations (Reasor and Montgomery 2001). VRWs may be associated with oceanic vortices as well but require high-resolution observations to be detected.

Oceanic observations of Rossby waves have tended to focus on long wavelengths \((L \approx 200 \text{ km})\) because of the generally low spatial resolution of measurements such as arrays of in situ instruments (e.g., Chave et al. 1992) or satellite altimetry (e.g., Chelton and Schlax 1996) or simply because of the dynamical nature of the observed phenomenon, such as annual Rossby waves in the tropical North Pacific (White 1977) or meanders of frontal jets (e.g., Hansen 1970; Tracey et al. 2006). Here, we describe high-resolution (2 km) observations by high-frequency radio (HFR) Doppler current meters and moored acoustic Doppler current profilers (ADCP), revealing short-wavelength \((L \approx 100 \text{ km})\) VRWs that dominated the subinertial near-surface variability west of Oahu, Hawaii, during March and April 2003.

2. Methods

Two 16-MHz HFR Doppler current meters were deployed (Fig. 1) from September 2002 to May 2003, providing 2-km-resolution hourly surface currents (for a description of the processing, see Chavanne et al. 2010b). Also, 300- and 75-kHz ADCPs were moored looking...
upward in the Kauai Channel, at mooring C2 (21.63°N, 158.86°W) in 4010-m bottom depth and at mooring A2 (21.75°N, 158.76°W) in 1330-m bottom depth (Fig. 1), from November 2002 to June 2003. The ADCPs covered depth ranges of 12–80 m at each mooring with 4-m vertical resolution and of 200–720 m at C2 and 160–1296 m at A2 with 8-m vertical resolution. The 10-min sample ensembles were averaged hourly.

The ADCPs were outside the domain covered by HFR vector currents but within the domain of radial currents from the southern HFR. Correlations between ADCP currents at 12-m depth, projected onto the directions toward the southern HFR, and the HFR surface radial currents were \(R = 0.9 \), with rms differences of \(\sim 11 \text{ cm s}^{-1} \). The HFR and ADCP currents were low-pass filtered with a 4-day cutoff period to remove tides, near-inertial oscillations, and island-trapped Kelvin waves (for details, see Chavanne et al. 2010a).

The larger-scale context is provided by geostrophic currents inferred from satellite altimetry on a 33-km grid (Ducet et al. 2000), produced by Ssalto/Duacs and distributed by the Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO; available online at http://www.aviso.oceanobs.com/).

3. Observations

From March to April 2003, subinertial currents south of the Kauai Channel were dominated by Rossby waves. Two snapshots about 180° out of phase are shown in Fig. 1. On 20 March (Fig. 1a), currents varied from westward to southeastward between the southwest and northeast parts of the domain, resulting in a negative vorticity band \(O(f) \) aligned in the northwest–southeast direction. On 21 April (Fig. 1b), the pattern was reversed and extended northeastward to the moorings.

These patterns propagated to the northeast, as seen for the current component normal to the propagation direction (Fig. 2b), \(\sim 90° \) off the mean current direction (Figs. 3a, 4a), suggesting that they were Rossby waves rather than isolated elongated eddies advected by the mean flow. Furthermore, during April 2003, the northwest–southeast near-surface velocity component at A2 (Fig. 2c) and near the coast (Fig. 2b at 0 km) were correlated, corroborating the approximate plane wave structure displayed in Fig. 1b. The current component parallel to the propagation direction (Fig. 2a) should be small for Rossby waves and is probably dominated by other processes here, which do not propagate with the waves. The structure was more complex during March 2003, when the currents in the northwestern part of the domain were northeastward (Fig. 1a). The vertical structures also differed between March and April 2003: they were both surface intensified, but the vertical decay scale was shorter in April than in March (Figs. 2c,d).

To analyze these differences, the wave structures will be quantitatively characterized during the following two time segments (delimited by vertical solid lines in Fig. 2): 14–30 March (period 1) and 13–25 April (period 2). Each segment encompasses a full wave period. Two complementary analyses will be performed: a Radon transform (RT; Challenor et al. 2001) on the vorticity field, and a complex empirical orthogonal function (CEOF) decomposition of the current field (Barnett 1983).
RTs can be used to infer the direction and velocity of propagation of wave-like signals in three dimensions (e.g., longitude, latitude, time). First, a scalar field ζ (relative vorticity) is projected onto an azimuthal direction ϕ, yielding a 2D (distance and time) scalar field $\tilde{\zeta}$. Then, $\tilde{\zeta}$ is projected onto a direction θ in the 2D plane, yielding a 1D scalar field $\widetilde{\zeta}$, the variance of which gives the energy of the signal for the chosen ϕ and θ angles. The values of ϕ and θ for which the energy is at maximum yield the azimuthal direction and velocity of propagation of the waves, respectively. This method yields phase velocities, periods, and wavelengths of 8.0 cm s$^{-1}$, 14.8 days, and 102 km during period 1 and 8.6 cm s$^{-1}$, 11.7 days, and 87 km during period 2.

CEOF analysis of HFR and ADCP currents provide a picture of both horizontal and vertical structures of the waves. In contrast to standard EOF analysis, CEOFs are capable of detecting propagating features, by using the Hilbert transform to retain both co-phase and quadrature-phase information on the signals. The waves were captured by the first CEOF, which contained 88% and 87% of the subinertial kinetic energy during periods 1 and 2 (Figs. 3, 4).

During period 1, surface currents in the southwestern part of the domain were zonally polarized (Fig. 3c), and they were oriented 40°–50° counterclockwise from the mean flow direction (Fig. 3a). They were less polarized closer to shore. The amplitude of vorticity fluctuations (Fig. 3c) reached $O(f)$ near the coast. The spatial phase (Fig. 3d) indicates a northeastward propagation, with a gradual turning and increase of local wavenumbers toward the coast, suggesting refraction by topography. The local wavelengths and instantaneous periods ranged from 50 to 250 km and from 12.5 to 19 days (Fig. 3f), bracketing the values estimated from the RT. The wave amplitude was surface intensified (Fig. 3b) and decayed below a surface layer ~40-m thick, with an e-folding scale $H = 170$ m. The mean currents decayed more slowly with depth.

During period 2, surface currents were polarized in the northwestward direction over most of the domain, including the moorings (Fig. 4c), and oriented 20°–35° counterclockwise from the mean flow (Fig. 4a). The spatial phase (Fig. 4d) indicates again a northeastward propagation, but it is less affected by topography than during period 1. The local wavelengths ranged from 25 to 150 km, bracketing the 87 km obtained from the RT. The instantaneous period (Fig. 4f) stabilized around 11.1 days when the amplitude was high, close to the 11.7 days estimated from the RT. The current amplitudes were surface intensified (Fig. 4b) and strongly sheared.
below a surface layer ~40 m thick, decaying with an e-folding scale $H = 33$ m within the top 100 m. The amplitude reached a secondary maximum around 200 m. The mean currents were strongly sheared in the top 100 m as well.

The orientations of the waves’ currents with respect to the horizontally sheared mean flow suggest that transfers of kinetic energy occurred between the waves and the mean flow (e.g., Kundu 1990, 429–436),

$$T_{KE} = \rho_0 \left[u^2 \frac{\partial U}{\partial x} + u' v' \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) + v^2 \frac{\partial V}{\partial y} \right].$$ \hspace{1cm} (1)

T_{KE} was positive over most of the domain during period 1 (Fig. 3e), corresponding to a kinetic energy transfer from the wave to the mean flow. However, during period 2, T_{KE} was weaker and displayed areas of both signs (Fig. 4e).

4. Discussion

The most striking feature of these Rossby waves is their eastward zonal phase velocity. Indeed, the dispersion relation for free linear Rossby waves propagating in
a flat-bottomed β-plane ocean at rest is (e.g., Gill 1982, p. 500):

$$\omega = -k \frac{\beta}{k^2 + l^2 + \gamma^2},$$

where ω is the frequency, k and l are the wavenumber zonal and meridional components, and $\gamma = (60 \text{ km})^{-1}$ is the inverse of the deformation radius (Chelton et al. 1998). The zonal phase velocity $c_p^x = \omega/k$ is westward ($c_p^x < 0$).

When the bottom is not flat, barotropic and bottom-trapped topographic Rossby waves can have an eastward zonal phase velocity if the bottom slopes down northward, opposing the β effect. However, surface-intensified baroclinic modes, such as those observed here (Figs. 3b, 4b), always have a westward zonal phase velocity (Rhines 1970; Straub 1994).

In the presence of a uniform zonal mean current U, the dispersion relation for free linear Rossby waves becomes (e.g., Vallis 2006, p. 231)

$$\omega = Uk - k \frac{\beta + U \gamma^2}{k^2 + l^2 + \gamma^2}.$$

The first term on the rhs of (3) is the Doppler shift, and $\beta = \beta + U \gamma^2$ is the meridional gradient of background potential vorticity. The zonal phase velocity can be eastward in the presence of a sufficiently strong eastward mean current $[U > \beta/(k^2 + l^2)]$, but the observed zonal background currents were westward during the passage of the waves (Figs. 3a, 4a).
However, the background currents were not purely zonal and not uniform, being associated with the mesoscale cyclone observed by altimetry southwest of Oahu (Fig. 5). With a barotropic vortex on a shallow-water f plane, Montgomery and Kallenbach (1997) derived a dispersion relation for waves with horizontal scales smaller than the vortex radius, using a Wentzel–Kramers–Brillouin (WKB) approximation (i.e., assuming that the background state is constant over the scales of the waves). Here, we will use the quasigeostrophic version of McWilliams et al. (2003), because the Rossby number $\text{Ro} = |\zeta|/f$ of the mesoscale cyclone is small (Fig. 5):

$$\omega = Vl + l \frac{\partial \zeta}{\partial r} - V\gamma l^2 \frac{k^2 + l^2 + \gamma^2}{k^2},$$ \hspace{1cm} (4)

where k and l are the local wavenumber radial and azimuthal components, V is the vortex azimuthal velocity, and $\zeta = \partial(rV)/(\partial r)$ is the relative vorticity. The expression $G = \partial \zeta/\partial r - V\gamma l^2$ is the radial gradient of background potential vorticity, which replaces β in Eq. (3).

The terms V, ζ, and G were computed from the altimetric observations (Fig. 6) by defining the cyclone center as the velocity minimum and azimuthally averaging the azimuthal velocity. The HFR currents were also azimuthally averaged over the HFR domain. Differences between the altimetric and HFR radial profiles of azimuthal velocity may result from the 200-km objective mapping filter used to grid sea level anomalies (Ducet et al. 2000) and from the limited azimuthal range of the HFR domain. The value of ζ (Fig. 6b) was positive within 110 km from the center and negative farther away. The value of G (Fig. 6c) was negative everywhere and much stronger than β, justifying the f-plane approximation used to derive (4).

The velocity field of the cyclone varied significantly over $L = O(100)$ km, so that a strict WKB approximation does not hold. Nevertheless, a local frequency from (4) can be estimated at each grid point by using the local wavenumbers obtained from the CEOFs and the characteristics of the vortex at the corresponding ranges. The median of wave periods over all grid points from altimetry (HFR) are 20.2 (15.5) days for period 1 and 11.1 (8.6) days for period 2. Frequencies are dominated by the Doppler shift term and therefore are not too sensitive to the radial gradients of potential vorticity.

FIG. 5. Weekly averaged geostrophic currents from altimetry, centered on (a) 20 Mar and (b) 21 Apr 2003. The VRWs, absent from the gridded altimetric observations but resolved by the HFRs, are superimposed. Vorticity is normalized by f. The green arrows indicate the direction of phase propagation inferred from the RTs, and the cyan arrows indicate the group velocity inferred from the dispersion relation of VRWs. The track of the cyclone center is shown in black, with stars every 7 days, and the black bullets indicate the center’s position at the times of the snapshots.
which are necessary for the propagation of the waves. These values are close to those obtained from the RT and CEOF analyses. The waves therefore satisfy approximately the dispersion relation of VRWs. The observed decrease of wavelength with time (from 102 km during period 1 to 87 km during period 2) is also consistent with the continuous shearing of the waves by the differential azimuthal flow of the vortex (Montgomery and Kallenbach 1997; McWilliams et al. 2003). The transfer of kinetic energy from the wave to the mean flow observed in March is also consistent with vortex strengthening resulting from wave-mean flow interactions seen in numerical simulations (Montgomery and Kallenbach 1997; Möller and Montgomery 1999; McWilliams et al. 2003; Graves et al. 2006).

Group velocities can be obtained from (4), and their median values over all grid points are shown in Fig. 5 (cyan arrows). Although the phase was propagating into the coast of Oahu, the energy was propagating almost parallel to the coast, precluding reflections that would have otherwise distorted the phase patterns.

Equation (4) was derived for an equivalent barotropic vortex. This is a reasonable approximation during period 1 (Fig. 3b), but the mean vertical shear cannot be ignored during period 2 (Fig. 4b). Its effects are illustrated by the idealized case of a horizontally homogeneous mean flow with constant vertical shear U_z, $U(z) = U_0 + U_z z$, where U_0 is the surface current. For constant buoyancy frequency N, the quasigeostrophic problem has a surface-trapped solution with a dispersion relation of the form (Pedlosky 2003, 211–212)

\[
\omega = k U_0 - \frac{k f U_z}{K N},
\]

where (k, l) is the wavenumber expressed in a Cartesian coordinate system aligned with the mean flow and $K = (k^2 + f^2)^{1/2}$. The wave amplitude decays exponentially with depth, with an e-folding scale $H = f/(KN)$. The term U_0 was obtained by spatially averaging the mean HFR currents, k and ω were taken from the RTs, and H was obtained from the CEOF vertical profiles to yield U_z from (5). The resulting profiles are shown in Figs. 3b and 4b (thin red lines). Although the required shear is stronger than the observed shear during period 1, the agreement in the top 100 m is better during period 2. Therefore, during period 2, the wave also satisfies the dispersion relation of surface boundary waves permitted by the mean vertical shear.

These observations provide evidence for the existence of VRWs, the dynamics of which depends on advection and vorticity gradients created by mesoscale eddies.
HFRs provided high-horizontal-resolution data, complementing the ADCPs’ vertical resolution, to support the VRW hypothesis that would otherwise have been difficult to test. VRWs may be ubiquitous in the ocean and may simply have gone undetected because of the lack of appropriate observations.

Acknowledgments. We thank Paolo Cipollini, Eric Firing, Mark Merrifield, and Michael Montgomery for fruitful scientific discussions and two anonymous reviewers, who helped to clarify the manuscript. The moorings, the HFRs, and their deployment were funded by the National Science Foundation; full acknowledgments can be found in Chavanne et al. (2010b). P. Flament and D. Luther are also supported by the State of Hawaii. This publication was prepared under Cooperative Agreement NA07NOS4730207 from the National Oceanographic and Atmospheric Administration Integrated Ocean Observing System Program Office, U.S. Department of Commerce.

REFERENCES

