Supplemental material for “Variable Nordic Seas inflow linked to shifts in North Atlantic circulation”

Helene Asbjørnsen¹, Helen L. Johnson², Marius Årthun¹

¹ Geophysical Institute, University of Bergen, Bergen, Norway
² Department of Earth Sciences, University of Oxford, Oxford, U.K.

Contents of this file: Fig. S1, Fig. S2, Fig. S3

Fig. S1. The leading two EOF modes of North Atlantic (20-80°N, 90°W-40°E) annual mean sea level pressure (SLP) variability from ERA-Interim in color, and the associated principal component time series. EOF1 (NAO) explains 51%, and EOF2 (EAP) explains 15% of the variability. Grey contour lines show the climatological annual mean SLP pattern (contours plotted every 3 hPa from 1007 to 1022 hPa). The SLP centre in the north is the Icelandic low and the centre in the south is the Azores high.
Fig. S2: Volume transport anomaly at the Iceland-Scotland Ridge decomposed into contributions from the different source regions (STR; subtropics, DH; Davis & Hudson straits, DEN; Denmark Strait, RES; residual). Correlations to the overall inflow volume transport are noted in parentheses.

Fig. S3: Late winter mean mixed layer depth (March-April) from (a) the Argo-based mixed layer depth climatology of Holte et al. 2017 (retrieved at http://mixedlayer.ucsd.edu), and (b) the ORCA025 hindcast simulation (1986-2015). The Argo-based climatology is an average over the Argo record, and is calculated by the density algorithm described in Holte et al. 2017.

References