Abdelmonem, A., E. Järvinen, D. Duft, E. Hirst, S. Vogt, T. Leisner, and M. Schnaiter, 2016: PHIPS–HALO: The airborne particle habit imaging and polar scattering probe—Part 1: Design and operation. Atmos. Meas. Tech., 9, 3131–3144, doi:10.5194/amt-9-3131-2016.
Adhikari, L., and Z. Wang, 2013: An A-Train satellite based stratiform mixed-phase cloud retrieval algorithm by combining active and passive sensor measurements. Br. J. Environ. Climate Change, 3, 587–611, doi:10.9734/BJECC/2013/3055.
Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi:10.1126/science.245.4923.1227.
Atlas, D., 1966: The balance level in convective storms. J. Atmos. Sci., 23, 635–651, doi:10.1175/1520-0469(1966)023<0635:TBLICS>2.0.CO;2.
Ávila, E. A., and R. G. Pereyra, 2000: Charge transfer during crystal-graupel collisions for two different cloud droplet size distributions. Geophys. Res. Lett., 27, 3837–3840, doi:10.1029/2000GL012302.
Ávila, E. A., R. E. Bürgesser, N. E. Castellano, R. G. Pereyra, and C. P. R. Saunders, 2011: Charge separation in low-temperature ice cloud regions. J. Geophys. Res., 116, D14202, doi:10.1029/2010JD015475.
Bachalo, W. D., 2000: Spray diagnostics for the twenty-first century. Atomization Sprays, 10, 439–474, doi:10.1615/AtomizSpr.v10.i3-5.110.
Bachalo, W. D., and M. J. Houser, 1984: Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng., 23, 583–590, doi:10.1117/12.7973341.
Bachalo, W. D., J. W. Strapp, E. Biagio, A. Korolev, and M. Wolde, 2015: Performance of the newly developed high speed imaging (HSI) probe for measurements of size and concentration of ice crystals and identification of phase composition of clouds. SAE 2015 Int. Conf. on Icing of Aircraft, Engines, and Structures, Prague, Czech Republic, SAE.
Bacon, N. J., M. B. Baker, and B. D. Swanson, 2003: Initial stages in the morphological evolution of vapor-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 1903–1928, doi:10.1256/qj.02.04.
Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 3160–3185, doi:10.1175/JAS3802.1.
Baker, B. A., M. B. Baker, E. R. Jayaratne, J. Latham, and C. P. R. Saunders, 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Meteor. Soc., 113, 1193–1215, doi:10.1002/qj.49711347807.
Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, and W. P. Menzel, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 781–11 792, doi:10.1029/1999JD901090.
Baum, B. A., R. A. Frey, G. G. Mace, M. K. Harkey, and P. Yang, 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42, 905–919, doi:10.1175/1520-0450(2003)042<0905:NMCDUM>2.0.CO;2.
Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, 1145–1163, doi:10.1175/JAMC-D-11-0203.1.
Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount Icing Detector. J. Atmos. Oceanic Technol., 6, 971–979, doi:10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.
Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251–264.
Baumgardner, D., J. F. Gayet, H. Gerber, A. Korolev, and C. Twohy, 2002: Clouds: Measurement techniques in-situ. Encyclopedia of Atmospheric Science, J. Curry, J. Holton, and J. Pyle, Eds., Academic Press, 489–498.
Baumgardner, D., R. Newton, M. Kramer, J. Meyer, A. Beyer, M. Wendisch, and P. Vochezer, 2014: The cloud particle spectrometer with polarization detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals. Atmos. Res., 142, 2–14, doi:10.1016/j.atmosres.2013.12.010.
Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.
Berdeklis, P., and R. List, 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58, 2751–2770, doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2.
Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geophys. Norv., 5 (6), 1–111.
Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, 156–178.
Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop-size response of the CSIRO liquid water probe. J. Atmos. Oceanic Technol., 4, 359–367, doi:10.1175/1520-0426(1987)004<0359:TDSROT>2.0.CO;2.
Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 41–56, doi:10.1175/JCLI-D-13-00169.1.
Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 4213–4228, doi:10.1175/JCLI-D-15-0564.1.
Boers, R., and R. M. Mitchell, 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo. Tellus, 46A, 229–241, doi:10.3402/tellusa.v46i3.15476.
Borovikov, A. M., I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. K. Khrgian, and S. M. Shmeter, 1963: Cloud Physics. Israel Program for Scientific Translations, 392 pp.
Borrmann, S., B. Luot, and M. Mishchenko, 2000: Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters. J. Aerosol Sci., 31, 789–799, doi:10.1016/S0021-8502(99)00563-7.
Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 2593–2602, doi:10.1016/S1352-2310(99)00492-6.
Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.
Brenguier, J. L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Wechsler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic. Technol., 15, 1077–1090, doi:10.1175/1520-0426(1998)015<1077:IODSDM>2.0.CO;2.
Brenguier, J. L., and Coauthors, 2013: In situ measurements of cloud and precipitation particles. Airborne Measurements for Environmental Research: Methods and Instruments, M. Wendisch and J. L. Brenguier, Eds., Wiley, 225–302, doi:10.1002/9783527653218.ch5.
Buriez, J. C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 2785–2813, doi:10.1080/014311697217332.
Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.
Cadeddu, M. P., J. C. Liljegren, and D. D. Turner, 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech., 6, 2359–2372, doi:10.5194/amt-6-2359-2013.
Castellano, N. E., E. E. Avila, and C. P. R. Saunders, 2004: Theoretical model of the Bergeron–Findeisen mechanism of ice crystal growth in clouds. Atmos. Environ., 38, 6751–6761, doi:10.1016/j.atmosenv.2004.09.003.
Castellano, N. E., E. E. Avila, and C. P. R. Saunders, 2008: Vapour density field of mixed-phase clouds. Atmos. Res., 88, 56–65, doi:10.1016/j.atmosres.2007.10.002.
Cesana, G., D. E. Waliser, X. Jiang, and J.-L. F. Li, 2015: Multi-model evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. Atmos., 120, 7871–7892, doi:10.1002/2014JD022932.
Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 8305–8314, doi:10.1029/JD093iD07p08305.
Chylek, P., and C. Borel, 2004: Mixed-phase cloud water/ice structure from high spatial resolution satellite data. Geophys. Res. Lett., 31, L14104, doi:10.1029/2004GL020428.
Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001a: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515–528, doi:10.1175/1520-0426(2001)018<0515:ATRIDW>2.0.CO;2.
Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001b: Assessing cloud phase conditions. J. Appl. Meteor., 40, 1967–1983, doi:10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.
Costa, A., and Coauthors, 2017: Classification of Arctic, mid-latitude and tropical clouds in the mixed-phase temperature regime. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-226.
Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290–303, doi:10.1175/2009JTECHA1282.1.
Davison, C. R., T. Rutke, J. W. Strapp, T. P. Ratvasky, and E. F. Emery, 2012: Naturally aspirating isokinetic total water content probe: Pre-flight wind tunnel testing and design modifications. Fourth AIAA Atmospheric and Space Environments Conf., New Orleans, LA, AIAA, 2012-3040, doi:10.2514/6.2012-3040.
Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.
Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.
Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 1014–1030, doi:10.1175/JAMC-D-12-054.1.
Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445–461, doi:10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2.
Dye, J. E., W. P. Winn, J. J. Jones, and D. W. Breed, 1989: The electrification of New Mexico thunderstorms 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 8643–8656, doi:10.1029/JD094iD06p08643.
Ehrlich, A., E. Bierwirth, M. Wendisch, J.-F. Gayet, G. Mioche, A. Lampert, and J. Heintzenberg, 2008: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches. Atmos. Chem. Phys., 8, 7493–7505, doi:10.5194/acp-8-7493-2008.
Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327–340, doi:10.1016/j.atmosres.2010.07.011.
Emery, E. F., D. R. Miller, S. R. Plaskon, J. W. Strapp, and L. Lilie, 2004: Ice particle impact on cloud water content instrumentation. Preprints, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 2004-0731, doi:10.2514/6.2004-731.
Fahrenheit, D. G., 1724: Experimenta & observationes de congelatione aquæ in vacuo factæ. Philos. Trans., 33, 78–84, doi:10.1098/rstl.1724.0016.
Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, doi:10.1029/2010JD015375.
Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 4221–4252, doi:10.1175/JAS-D-16-0037.1.
Farrington, R., and Coauthors, 2016: Discriminating between liquid and ice particles measured in mixed-phase cloud during the INUPIAQ campaign. Int. Conf. on Clouds and Precipitation, Manchester, UK, P16.18.
Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 9512–9520, doi:10.1002/2015GL065497.
Field, P. R., R. Wood, P. R. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a Fast FSSP. J. Atmos. Oceanic Technol., 20, 249–261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m-scale. Quart. J. Roy. Meteor. Soc., 130, 1877–1904, doi:10.1256/qj.03.102.
Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 1066–1079, doi:10.1175/JAS-D-11-026.1.
Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870–880. doi:10.1002/qj.2175.
Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.
Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121–133.
Findeisen, W., 1940: On the origin of thunderstorm electricity. Meteor. Z., 57, 201–215.
Findeisen, W., 1942: Results of cloud and precipitation observations in weather reconnaissance flights over sea. Forsch. Erfahr. Reichsamt Wetterdienst, 8B, 1–12.
Findeisen, W., and E. Findeisen, 1943: Investigations on the ice splinter formation on rime layers (A contribution to the origin of storm electricity and to the microstructure of cumulonimbi). Meteor. Z., 60 (5), 145–154.
Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains. Atmos. Res., 91, 333–352, doi:10.1016/j.atmosres.2008.08.011.
Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 1779–1804, doi:10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.
Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489–529, doi:10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.
Freer, M., D. Baumgardner, M. W. Gallagher, A. Dean, A. Petzold, and J. Dorsey, 2014: Droplets, ice crystal or ash? Real time detection using the next generation Backscatter Cloud Probe. 14th Conf. on Cloud Physics, Boston, MA, Amer. Meteor. Soc., P2.20. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper249408.html.]
Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.
Fridlind, A. M., and Coauthors, 2012a: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Morrie, H. Morrison, P. Zuidema, and M. D. Snipe, 2012b: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365–389, doi:10.1175/JAS-D-11-052.1.
Fu, Q., and S. Hollars, 2004: Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE–ACE observations. J. Atmos. Sci., 61, 2083–2091, doi:10.1175/1520-0469(2004)061<2083:TMCWVP>2.0.CO;2.
Fuchs, B. R., and Coauthors, 2015: Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos., 120, 6575–6596, doi:10.1002/2015JD023271.
Fugal, J. P., and R. A. Shaw, 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259–271, doi:10.5194/amt-2-259-2009.
Fugal, J. P., T. J. Schultz, and R. A. Shaw, 2009: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol., 20, 075501, doi:10.1088/0957-0233/20/7/075501.
Fukuta, N., 1969: Experimental studies on the growth of small ice crystals. J. Atmos. Sci., 26, 522–531, doi:10.1175/1520-0469(1969)026<0522:ESOTGO>2.0.CO;2.
Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 1963–1979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.
Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson, 2016: A physically based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci., 73, 279–291, doi:10.1175/JAS-D-15-0021.1.
Gao, B.-C., and A. F. H. Goetz, 1990: Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data. J. Geophys. Res., 95, 3549–3564, doi:10.1029/JD095iD04p03549.
Gardiner, B. A. and J. Hallett, 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171–180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.
Gayet, J.-F., S. Asano, A. Yamazaki, A. Uchiyama, A. Sinyuk, O. Jourdan, and F. Auriol, 2002: Two case studies of winter continental-type water and mixed-phase stratocumuli over the sea. 1: Microphysical and optical properties. J. Geophys. Res., 107, 4569, doi:10.1029/2001JD001106.
Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, and A. J. Conley, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
Girard, E., G. Dueymes, P. Du, and A. K. Bertram, 2013: Assessment of the effects of acid-coated ice nuclei on the Arctic cloud microstructure, atmospheric dehydration, radiation and temperature during winter. Int. J. Climatol., 33, 599–614, doi:10.1002/joc.3454.
Gliki, N. V., and A. A. Eliseev, 1962: Effect of supersaturation and temperature of the development of the initial growth forms on a sphere of ice. Kristallografia, 7, 802–804.
Gliki, N. V., A. A. Eliseev, and N. M. Marchenko, 1962: The growth of spherical ice crystals. Kristallografia, 7, 609–612.
Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 747–14 759, doi:10.1029/1999JD901183.
Gonda, T., and T. Yamazaki, 1984: Initial growth forms of snow crystals growing from frozen droplets. J. Meteor. Soc. Japan, 62, 190–192, doi:10.2151/jmsj1965.62.1_190.
Green, R. O., T. H. Painter, D. A. Roberts, and J. Dozier, 2006: Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour. Res., 42, W10402, doi:10.1029/2005WR004509.
Gregory, D., and D. Morris, 1996: The sensitivity of climate simulations to the specification of mixed-phase clouds. Climate Dyn., 12, 641–651, doi:10.1007/BF00216271.
Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi:10.1029/96JD03436.
Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106, 27 473–27 484, doi:10.1029/2000JD000236.
Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulation of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 45–75, doi:10.1016/S0169-8095(98)00098-2.
Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 1100–1116, doi:10.1175/2008JAMC1882.1.
Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367–381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.
Heymsfield, A. J., and L. M. Miloshevich, 1989: Evaluation of liquid water measuring instruments in cold clouds sampled during FIRE. J. Atmos. Oceanic Technol., 6, 378–388, doi:10.1175/1520-0426(1989)006<0378:EOLWMI>2.0.CO;2.
Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 2335–2353, doi:10.1175/1520-0469(1993)050<2335:HINASL>2.0.CO;2.
Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.
Hill, A. A., P. R. Field, K. Furtado, A. Korolev, and B. J. Shipway, 2014: Mixed-phase clouds in a turbulent environment. Part 1: Large-eddy simulation experiments. Quart. J. Roy. Meteor. Soc., 140, 855–869, doi:10.1002/qj.2177.
Hobbs, P. V., and L. F. Radke, 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part II: Techniques for the physical evaluation of seeding. J. Appl. Meteor., 14, 805–818, doi:10.1175/1520-0450(1975)014<0805:TNOWCA>2.0.CO;2.
Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124, 2035–2071, doi:10.1002/qj.49712455012.
Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30, 813–823, doi:10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.
Hodapp, C. L., L. D. Carey, and R. E. Orville, 2008: Evolution of radar reflectivity and total lightning structure of the 21 April 2006 mesoscale convective system over Texas. Atmos. Res., 89, 113–137, doi:10.1016/j.atmosres.2008.01.007.
Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451–476, doi:10.1256/003590002321042054.
Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003a: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE98. Quart. J. Roy. Meteor. Soc., 129, 2089–2116, doi:10.1256/rj.01.208.
Hogan, R. J., A. J. Illingworth, E. J. O’Connor, and J. P. V. Poiares Baptista, 2003b: Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc., 129, 2117–2134, doi:10.1256/qj.01.209.
Hoose, C., U. Lohmann, P. Steir, B. Verheggen, and E. Weingartner, 2008: Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations. J. Geophys. Res., 113, D07210, doi:10.1029/2007JD009251.
Hu, Y., and Coauthors, 2007: The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 5327–5332, doi:10.1364/OE.15.005327.
Hu, Y., S. Rodier, K.-M. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384.
Huang, D., K. Johnson, Y. Liu, and W. Wiscombe, 2009: High-resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars. Geophys. Res. Lett., 36, L24807, doi:10.1029/2009GL041364.
Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanöe, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JB009424.
Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000jc000423.
Isaac, G. A., and R. S. Schemenauer, 1979: Large particles in supercooled regions of northern Canadian cumulus clouds. J. Appl. Meteor., 18, 1056–1065, doi:10.1175/1520-0450(1979)018<1056:LPISRO>2.0.CO;2.
Iwabuchi, T., and C. Magono, 1975: A laboratory experiment on the freezing electrification of freely falling water droplets. J. Meteor. Soc. Japan, 53, 393–401, doi:10.2151/jmsj1965.53.6_393.
Jackson, R. C., and Coauthors, 2012: The dependence of Arctic mixed-phase stratus ice cloud microphysics on aerosol concentration using observations acquired during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.
Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103–117, doi:10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2.
Jäkel, E., J. Walter, and M. Wendisch, 2013: Thermodynamic phase retrieval of convective clouds: Impact of sensor viewing geometry and vertical distribution of cloud properties. Atmos. Meas. Tech., 6, 539–547, doi:10.5194/amt-6-539-2013.
Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 327–345.
Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343–354, doi:10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.
Järvinen, E., and Coauthors, 2016: Quasi-spherical ice in convective clouds. J. Atmos. Sci., 73, 3885–3910, doi:10.1175/JAS-D-15-0365.1.
Jayaratne, E. R., and C. P. R. Saunders, 1985: Thunderstorm electrification: The effect of cloud droplets. J. Geophys. Res., 90, 13 063–13 066, doi:10.1029/JD090iD07p13063.
Jayaratne, E. R., and C. P. R. Saunders, 2016: The interaction of ice crystals with hailstones in wet growth and its possible role in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 142, 1809–1815, doi:10.1002/qj.2777.
Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609–630, doi:10.1002/qj.49710946111.
Jiang, H., W. R. Cotton, J. Pinto, J. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 2105–2117, doi:10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.
Johnson, A., S. Lasher-Trapp, A. Bansemer, Z. Ulanowski, and A. J. Heymsfield, 2014: Difficulties in early ice detection with the Small Ice Detector-2 HIAPER (SID-2H) in maritime cumuli. J. Atmos. Oceanic Technol., 31, 1263–1275, doi:10.1175/JTECH-D-13-00079.1.
Kaltenboeck, R., and A. Ryzhkov, 2013: Comparison of hail signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323–336, doi:10.1016/j.atmosres.2012.05.013.
Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, doi:10.1029/2011GL048532.
Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model. J. Climate, 29, 4617–4636, doi:10.1175/JCLI-D-15-0358.1.
Keeler, R. J., J. Lutz, and J. Vivekanandan, 2000: S-Pol: NCAR’s polarimetric Doppler research radar. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1570–1573.
Keith, W. D., and C. P. R. Saunders, 1990: Further laboratory studies of the charging of graupel during ice crystal interactions. Atmos. Res., 25, 445–464, doi:10.1016/0169-8095(90)90028-B.
Key, J. R., and J. M. Intrieri, 2000: Cloud particle phase determination with AVHRR. J. Appl. Meteor., 39, 1797–1804, doi:10.1175/1520-0450-39.10.1797.
King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 1809–1813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.
Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud. Quart. J. Roy. Meteor. Soc., 135, 979–1002, doi:10.1002/qj.416.
Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86–103, doi:10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.
Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15–89.
Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars—New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608–1624, doi:10.1175/BAMS-88-10-1608.
Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. Atmos., 119, 3372–3400, doi:10.1002/2013JD021119.
Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 3372–3375, doi:10.1175/JAS4035.1.
Korolev, A. V., 2008: Rates of phase transformations in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134, 595–608, doi:10.1002/qj.230.
Korolev, A. V., and J. W. Strapp, 2002: Accuracy of measurements of cloud ice water content by the Nevzorov probe. 40th Aerospace Science Meeting and Exhibit, Reno, NV, AIAA, AIAA 2002-0679. [Available online at https://www.eol.ucar.edu/homes/dcrogers/C130/Probes/Nevzorov/IWC_AIAA.pdf.]
Korolev, A. V., and G. A. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 19–38, doi:10.1256/qj.01.203.
Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 2957–2974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.
Korolev, A. V., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase and ice clouds. J. Atmos. Sci., 63, 2865–2880, doi:10.1175/JAS3784.1.
Korolev, A. V., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 66–86, doi:10.1175/2007JAS2355.1.
Korolev, A. V., and G. A. Isaac, 2008: The effect of spatial averaging on the relative humidity and phase composition of clouds. Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, P1.3. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Korolev&Isaac_extended.pdf.]
Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 1495–1510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.
Korolev, A. V., G. A. Isaac, S. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 39–66, doi:10.1256/qj.01.204.
Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612–622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.
Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967–973, doi:10.1175/2010BAMS3141.1.
Korolev, A. V., E. F. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690–708, doi:10.1175/JTECH-D-12-00142.1.
Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 2527–2553, doi:10.1175/JTECH-D-13-00115.1.
Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2013c: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 2121–2131, doi:10.1175/JTECH-D-13-00007.1.
Koshak, W. J., and E. P. Krider, 1989: Analysis of lightning field changes during active Florida thunderstorms. J. Geophys. Res., 94, 1165–1186, doi:10.1029/JD094iD01p01165.
Kou, L., D. Labrie, and P. Chylek, 1993: Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt., 32, 3531–3540, doi:10.1364/AO.32.003531.
Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 3505–3522, doi:10.5194/acp-9-3505-2009.
Krehbiel, P. R., 1981: An Analysis of the Electric Field Change Produced by Lightning. Vols. I and II, New Mexico Mining and Technology Rep. T-11, 490 pp.
Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, 90–113.
Krehbiel, P. R., M. Brook, and R. A. McCrory, 1979: An analysis of the charge structure of lightning discharges to ground. J. Geophys. Res., 84, 2432–2456, doi:10.1029/JC084iC05p02432.
Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: Lightning mapping observations in central Oklahoma. Eos, Trans. Amer. Geophys. Union, 81, 21–25, doi:10.1029/00EO00014.
Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 1820–1843, doi:10.1175/JAMC-D-13-0354.1.
Ladino, L. A., A. Korolev, I. Heckman, M. Wolde, A. M. Fridlind, and A. S. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 1574–1582, doi:10.1002/2016GL072455.
Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 1683–1706, doi:10.5194/amt-3-1683-2010.
Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489–507, doi:10.1175/MWR-D-13-00184.1.
Lawson, P., C. Gurganus, S. Woods, and R. Bruintjes, 2017: Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a “new” secondary ice process. J. Atmos. Sci., 174, 2899–2920, doi:10.1175/JAS-D-17-0033.
Lawson, R. P., and A. Gettelman, 2014: Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA, 111, 18 156–18 161, doi:10.1073/pnas.1418197111.
Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 989–15 014, doi:10.1029/2000JD900789.
Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 1462–1477, doi:10.1175/JTECH1927.1.
Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 2429–2445, doi:10.1175/JAS-D-14-0274.1.
LeBlanc, S. E., P. Pilewskie, K. S. Schmidt, and O. Coddington, 2015: A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra. Atmos. Meas. Tech., 8, 1361–1383, doi:10.5194/amt-8-1361-2015.
Leon, D. C., and Coauthors, 2016: The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern United Kingdom. Bull. Amer. Meteor. Soc., 97, 1003–1020, doi:10.1175/BAMS-D-14-00157.1.
Lhermitte, R., 1987: A 94-GHz Doppler radar for cloud observations. J. Atmos. Oceanic Technol., 4, 36–48, doi:10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2.
Lhermitte, R., and E. Williams, 1985: Thunderstorm electrification: A case study. J. Geophys. Res., 90, 6071–6078, doi:10.1029/JD090iD04p06071.
Li, Z.-X., and H. Le Treut, 1992: Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modeling assumptions. Climate Dyn., 7, 133–139, doi:10.1007/BF00211155.
Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, doi:10.1029/2001GL014357.
Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 8917–8934, doi:10.5194/acp-9-8917-2009.
Lohmann, U., J. Henneberger, O. Henneberg, J. P. Fugal, J. Bühl, and Z. A. Kanji, 2016: Persistence of orographic mixed-phase clouds. Geophys. Res. Lett., 43, 10 512–10 519, doi:10.1002/2016GL071036.
López, M. L., and E. E. Ávila, 2012: Deformations of frozen droplets formed at −40°C. Geophys. Res. Lett., 39, L01805, doi:10.1029/2011GL050185.
Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836–2848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.
Lubin, D., 2004: Thermodynamic phase of maritime Antarctic clouds from FTIR and supplementary radiometric data. J. Geophys. Res., 109, D04204, doi:10.1029/2003JD003979.
Ludlam, F. H., 1951: The heat economy of a rimed cylinder. Quart. J. Roy. Meteor. Soc., 77, 663–666, doi:10.1002/qj.49707733410.
Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.
Luque, M. Y., R. Burgesser, and E. Avila, 2016: Thunderstorm graupel charging in the absence of supercooled water droplets. Quart. J. Roy. Meteor. Soc., 142, 2418–2423, doi:10.1002/qj.2834.
Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.
Lyons, W. A., T. E. Nelson, E. R. Williams, J. Cramer, and T. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke. Science, 282, 77–81, doi:10.1126/science.282.5386.77.
MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 1671–1697, doi:10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2.
Marshall, T. C., and W. P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 7141–7157, doi:10.1029/JC087iC09p07141.
Mattos, E. V., L. A. T. Machado, E. R. Williams, S. J. Goodman, R. J. Blakeslee, and J. C. Bailey, 2017: Electrification life cycle of incipient thunderstorms. J. Geophys. Res. Atmos., 122, 4670–4697, doi:10.1002/2016JD025772.
Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 2559–2578, doi:10.1002/2016JD025951.
Mazin, I. P., 1986: Relation of clouds phase structure to vertical motion. Sov. Meteor. Hydrol., 11, 27–35.
Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18, 543–558, doi:10.1175/1520-0426(2001)018<0543:TOICFM>2.0.CO;2.
McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 8836–8857, doi:10.1175/JCLI-D-14-00287.1.
McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 9539–9554, doi:10.1002/2015JD023603.
McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650–668, doi:10.1002/2015MS000589.
McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17, 3799–3813, doi:10.1175/1520-0442(2004)017<3799:SPOMAC>2.0.CO;2.
McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, and A. J. Heymsfield, 2007: Ice properties of single layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (MPACE). Part I: Observations. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008633.
McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183–201, doi:10.1175/2010BAMS2935.1.
McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small particle shape in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 1277–1293, doi:10.1175/JAMC-D-12-0114.1.
Meyer, J., 2013: Ice Crystal Measurements with the New Particle Spectrometer NIXE-CAPS. Forschungszentrum Jülich, 132 pp.
Miller, S. D., Y.-J. Noh, and A. K. Heidinger, 2014: Liquid-top mixed-phase cloud detection from shortwave-infrared satellite radiometer observations: A physical basis. J. Geophys. Res. Atmos., 119, 8245–8267, doi:10.1002/2013JD021262.
Mioche, G., O. Jourdan, M. Ceccaldi, and J. Delanöe, 2015: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmos. Chem. Phys., 15, 2445–2461, doi:10.5194/acp-15-2445-2015.
Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443–455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.
Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J. Climate, 24, 2405–2418, doi:10.1175/2010JCLI3842.1.
Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk parameterization implemented into a single-column model. J. Geophys. Res., 108, 4255, doi:10.1029/2002JD002229.
Morrison, H., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multilayered cloud. Quart. J. Roy. Meteor. Soc., 135, 1003–1019, doi:10.1002/qj.415.
Morrison, H., and Coauthors, 2011: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M05001, doi:10.1029/2011MS000066.
Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 11–17, doi:10.1038/ngeo1332.
Moss, S. J., and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model parametrization of ice to water ratios in clouds. Atmos. Res., 34, 1–25, doi:10.1016/0169-8095(94)90078-7.
Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487–508, doi:10.1002/qj.49709640910.
Muhlbauer, A., and U. Lohmann, 2009: Sensitivity studies of aerosol–cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66, 2517–2538, doi:10.1175/2009JAS3001.1.
Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 8173–8196, doi:10.5194/acp-10-8173-2010.
Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 6502–6509, doi:10.1002/2015GL064604.
Murakami, M., and T. Matsuo, 1990: Development of the hydrometeor videosonde. J. Atmos. Oceanic Technol., 7, 613–620, doi:10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.
Murphy, A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, D. M. Plummer, J. A. Finlon, and A. A. Rosenow, 2017: Microphysical structure of elevated convection in winter cyclones. J. Atmos. Sci., 74, 69–91, doi:10.1175/JAS-D-16-0204.1.
Nasiri, S. L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 2895–2910, doi:10.1175/2008JAMC1879.1.
Naud, C., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 2109–2124, doi:10.1175/JCLI-D-13-00432.1.
Neel, C. B., 1955: Heated-wire-liquid-water content instrument and results of initial flight tests in icing conditions. National Advisory Committee for Aeronautics Research Memo. RMA54123, 33 pp.
Nichman, L., and Coauthors, 2016: Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments. Atmos. Chem. Phys., 16, 3651–3664, doi:10.5194/acp-16-3651-2016.
Nicholls, S., J. Leighton, and R. Barker, 1990: A new fast response instrument for measuring total water content from aircraft. J. Atmos. Oceanic Technol., 7, 706–718, doi:10.1175/1520-0426(1990)007<0706:ANFRIF>2.0.CO;2.