Abercromby, R., 1887: Suggestions for an international nomenclature of clouds. Quart. J. Roy. Meteor. Soc., 13, 154–166, https://doi.org/10.1002/qj.4970136212.
Adams-Selin, R. D., and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212–227, https://doi.org/10.1175/2009MWR2892.1.
Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578–599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.
Anderson, G. D., 2010: The first weather satellite picture. Weather, 65, 87–87, https://doi.org/10.1002/wea.550.
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment: Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.
Austin, P. M., and S. G. Geotis, 1979: Raindrop sizes and related parameters for GATE. J. Appl. Meteor., 18, 569–575, https://doi.org/10.1175/1520-0450(1979)018<0569:RSARPF>2.0.CO;2.
Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. 1997 Int. Geoscience and Remote Sensing Symp., Remote Sensing—A Scientific Vision for Sustainable Development, Vol. 4, 1633–1635, Singapore, IEEE, https://doi.org/10.1109/IGARSS.1997.608993.
Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102–117, https://doi.org/10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2.
Barnes, H. C., and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden–Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 6996–7023, https://doi.org/10.1002/jgrd.50375.
Barnes, H. C., and R. A. Houze Jr., 2014: Precipitation hydrometeor type relative to the mesoscale airflow in oceanic deep convection of the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 119, 13 990–14 014, https://doi.org/10.1002/2014JD022241.
Barnes, H. C., and R. A. Houze Jr., 2016: Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems. J. Geophys. Res. Atmos., 121, 8269–8296, https://doi.org/10.1002/2016JD025074.
Barnes, H. C., M. D. Zuluaga, and R. A. Houze Jr., 2015: Latent heating characteristics of the MJO computed from TRMM observations. J. Geophys. Res. Atmos., 120, 1322–1334, https://doi.org/10.1002/2014JD022530.
Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104–118, https://doi.org/10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.
Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analysis and a modeling study. Mon. Wea. Rev., 125, 2662–2682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.
Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96, 833–850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.
Braun, S. A., and R. A. Houze Jr., 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121, 55–77, https://doi.org/10.1002/qj.49712152104.
Braun, S. A., and R. A. Houze Jr., 1997: The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation. Mon. Wea. Rev., 125, 478–504, https://doi.org/10.1175/1520-0493(1997)125<0478:TEOTJP>2.0.CO;2.
Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313–338, https://doi.org/10.1175/1520-0469(1979)036<0313:MUDDBR>2.0.CO;2.
Browning, K. A., and F. Ludlam, 1962: Airflow within convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135, https://doi.org/10.1002/qj.49708837602.
Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 1207–1230, https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.
Bryan, G. H., and J. M. Fritsch, 2003: On the existence of convective rolls in the convective region of squall lines. 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/pdfpapers/62556.pdf.
Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.
Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.
Cetrone, J., and R. A. Houze Jr., 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 1114–1123, https://doi.org/10.1175/2011JAS3580.1.
Chang, C.-P., 1970: Westward propagating cloud patterns in the tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27, 133–138, https://doi.org/10.1175/1520-0469(1970)027<0133:WPCPIT>2.0.CO;2.
Chang, C.-P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195–201, https://doi.org/10.1175/1520-0469(1970)027<0195:ASSOEW>2.0.CO;2.
Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.
Chen, S. S., and Coauthors, 2016: Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bull. Amer. Meteor. Soc., 97, 405–423, https://doi.org/10.1175/BAMS-D-13-00196.1.
Cheng, C.-P., and R. A. Houze Jr., 1979: The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev., 107, 1370–1381, https://doi.org/10.1175/1520-0493(1979)107<1370:TDOCAM>2.0.CO;2.
Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933–960, https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2.
Clavner, M., W. R. Cotton, S. C. van den Heever, S. M. Saleeby, and J. R. Pierce, 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency. Atmos. Res., 199, 193–208, https://doi.org/10.1016/j.atmosres.2017.08.010.
Clavner, M., L. D. Grasso, W. R. Cotton, and S. C. van den Heever, 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution: Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209–223, https://doi.org/10.1016/j.atmosres.2017.06.002.
Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.
Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 3606–3624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.
Cunning, J. B., 1986: The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 1478–1486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.
Cunning, J. B., and R. I. Sax, 1977: A Z–R relationship for the GATE B-scale array. Mon. Wea. Rev., 105, 1330–1336, https://doi.org/10.1175/1520-0493(1977)105<1330:ARFTGB>2.0.CO;2.
Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1.
Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and modelsimulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 6377–6402, https://doi.org/10.1029/98JD02720.
Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment. Bull. Amer. Meteor. Soc., 85, 1075–1093, https://doi.org/10.1175/BAMS-85-8-1075.
Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891–1911, https://doi.org/10.1175/JAS-D-12-0245.1.
Dorst, N. M., 2007: The National Hurricane Research Project: 50 years of research, rough rides, and name changes. Bull. Amer. Meteor. Soc., 88, 1566–1588, https://doi.org/10.1175/BAMS-88-10-1566.
Douglas, M. W., M. Nicolini, and C. A. Saulo, 1998: Observational evidences of a low level jet east of the Andes during January–March 1998. Meteorologica, 23, 63–72.
Drager, A. J., and S. C. van den Heever, 2017: Characterizing convective cold pools. J. Adv. Model. Earth Syst., 9, 1091–1115, https://doi.org/10.1002/2016MS000788.
Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587–5646, https://doi.org/10.5194/acp-9-5587-2009.
Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative–convective instability. J. Adv. Model. Earth Syst., 6, 75–90, https://doi.org/10.1002/2013MS000270.
Esbensen, S. K., and M. J. McPhaden, 1996: Enhancement of tropical ocean evaporation and sensible heat flux by atmospheric mesoscale systems. J. Climate, 9, 2307–2325, https://doi.org/10.1175/1520-0442(1996)009<2307:EOTOEA>2.0.CO;2.
Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impact on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581–E4590, https://doi.org/10.1073/pnas.1316830110.
Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1.
Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357–381, https://doi.org/10.1002/2014MS000384.
Feng, Z., L.-Y. Leung, S. Hagos, R. A. Houze Jr., C. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central U.S. rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.
Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.
Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108, 153–168, https://doi.org/10.1175/1520-0493(1980)108<0153:POASLI>2.0.CO;2.
Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846–3879, https://doi.org/10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2.
Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307–314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.
Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357, https://doi.org/10.1175/0065-9401-28.50.323.
Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 1333–1345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.
Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807, https://doi.org/10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.
Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405–436, https://doi.org/10.3402/tellusa.v7i4.8920.
Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by Version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257–272, https://doi.org/10.2151/jmsj.2013-302.
Futyan, J., and A. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 5041–5060, https://doi.org/10.1175/JCLI4297.1.
Gaynor, J. E., and P. A. Mandics, 1978: Analysis of the tropical marine boundary layer during GATE using acoustic sounder data. Mon. Wea. Rev., 106, 223–232, https://doi.org/10.1175/1520-0493(1978)106<0223:AOTTMB>2.0.CO;2.
Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1.
Gentine, P., A. Garelli, S.-B. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874–883, https://doi.org/10.1002/2015GL067262.
Godfrey, J. S., R. A. Houze Jr., R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sumi, and R. Weller, 1998: Coupled Ocean–Atmosphere Response Experiment (COARE): An interim report. J. Geophys. Res., 103, 14 395–14 450, https://doi.org/10.1029/97JC03120.
Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 1138–1155, https://doi.org/10.1002/2015JD023813.
Hamilton, R. A., and J. W. Archbold, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 71, 231–262, https://doi.org/10.1002/qj.49707130905.
Hartmann, D. L., 2016: Tropical anvil clouds and climate sensitivity. Proc. Natl. Acad. Sci. USA, 113, 8897–8899, https://doi.org/10.1073/pnas.1610455113.
Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113–121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.
Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, https://doi.org/10.1029/2007JD009429.
Hildebrandsson, H. H., 1887: Remarks concerning the nomenclature of clouds for ordinary use. Quart. J. Roy. Meteor. Soc., 13, 148–154, https://doi.org/10.1002/qj.4970136211.
Hinrichs, G., 1888a: Tornadoes and derechos. Amer. Meteor. J., 5, 306–317.
Hinrichs, G., 1888b: Tornadoes and derechos (continued). Amer. Meteor. J., 5, 341–349.
Holland, J. Z., 1970: Preliminary report on the BOMEX Sea-Air Interaction Program. Bull. Amer. Meteor. Soc., 51, 809–820, https://doi.org/10.1175/1520-0477(1970)051<0809:PROTBS>2.0.CO;2.
Houze, R. A., Jr., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 1112–1123, https://doi.org/10.1175/1520-0469(1973)030<1112:ACSOVT>2.0.CO;2.
Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.
Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396–410, https://doi.org/10.2151/jmsj1965.60.1_396.
Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461, https://doi.org/10.1002/qj.49711548702.
Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344, https://doi.org/10.1175/2009MWR2989.1.
Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, 432 pp.
Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541–576, https://doi.org/10.1029/RG019i004p00541.
Houze, R. A., Jr., and D. D. Churchill, 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44, 1845–1867, https://doi.org/10.1175/1520-0469(1987)044<1845:MOACMI>2.0.CO;2.
Houze, R. A., Jr., C.-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37, 754–773, https://doi.org/10.1175/1520-0469(1980)037<0754:DOCMAH>2.0.CO;2.
Houze, R. A., Jr., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 1595–1614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.
Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays in midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.
Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.
Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 3058–3089, https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.
Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778–2800, https://doi.org/10.1175/2009MWR2727.1.
Houze, R. A., Jr., K. L. Rasmussen, S. Medina, S. R. Brodzik, and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291–298, https://doi.org/10.1175/2010BAMS3173.1.
Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev. Geophys., 53, https://doi.org/10.1002/2015RG000488.
Howard, L., 1865: Essay on the modifications of clouds. 3rd ed. John Churchill & Sons, 37 pp.
Hudlow, M. D., 1979: Mean rainfall patterns for the three phases of GATE. J. Appl. Meteor., 18, 1656–1669, https://doi.org/10.1175/1520-0450(1979)018<1656:MRPFTT>2.0.CO;2.
Humphreys, W. J., 1914: The thunderstorm and its phenomena. Mon. Wea. Rev., 42, 348–380, https://doi.org/10.1175/1520-0493(1914)42<348:TTAIP>2.0.CO;2.
Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428–2449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.
Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308–319, https://doi.org/10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.
Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131–148, https://doi.org/10.1175/MWR-2843.1.
Jorgensen, D. P., H. V. Murphey, and R. M. Wakimoto, 2004: Rear-inflow evolution in a non-severe bow-echo observed by airborne Doppler radar during BAMEX. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6, https://ams.confex.com/ams/pdfpapers/81428.pdf.
Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187–216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.
Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 1165–1207, https://doi.org/10.1002/qj.1999.49712555605.
Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.
Kuettner, J. P., and D. E. Parker, 1976: GATE: Report of the field phase. Bull. Amer. Meteor. Soc., 57, 11–27, https://doi.org/10.1175/1520-0477-57.1.11.
Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521–544, https://doi.org/10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.
Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405, https://doi.org/10.1002/qj.49712353807.
Leary, C. A., and R. A. Houze Jr., 1979a: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669–679, https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.
Leary, C. A., and R. A. Houze Jr., 1979b: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437–457, https://doi.org/10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.
LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 2444–2457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.
LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493–3518, https://doi.org/10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.
Ligda, M. G. H., 1956: The radar observations of mature prefrontal squall lines in the midwestern United States. Sixth OSTIV Congress, Publ. IV, Fédération Aéronautique Internationale, St-Yan, France, http://journals.sfu.ca/ts/index.php/op/article/download/1364/1297.
Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156–179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.
Liu, C., and E. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453–466, https://doi.org/10.1029/2012JD018409.
Liu, C., and E. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 3591–3595, https://doi.org/10.1002/2015GL063776.
Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600–621, https://doi.org/10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.
Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475–1493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.
Mandics, P. A., and F. F. Hall Jr., 1976: Preliminary results from the GATE acoustic echo sounder. Bull. Amer. Meteor. Soc, 57, 1142–1147, https://doi.org/10.1175/1520-0477-57.9.1142.
Mapes, B. E., S. Tulich, J.-L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 3–29, https://doi.org/10.1016/j.dynatmoce.2006.03.003.
Marengo, J., W. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the LLJ east of the Andes as derived from the NCEP reanalyses. J. Climate, 17, 2261–2280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.
Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, S. M. Kreidenweis, and P. J. DeMott, 2017: The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage MCS precipitation. J. Atmos. Sci., 74, 3657–3678, https://doi.org/10.1175/JAS-D-16-0361.1.
Marks, F. D., Jr., and R. A. Houze Jr., 1983: Three-dimensional wind field in the developing inner core of Hurricane Debby. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 298–304.
Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multisensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 1788–1812, https://doi.org/10.1002/qj.669.
Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 108, 322–336, https://doi.org/10.1175/2010MWR3422.1.
Martin, D. W., and O. Karst, 1969: A census of cloud systems over the tropical Pacific. Studies in Atmospheric Energetics Based on Aerospace Probings Annual Rep. 1968, Space Science and Engineering Center, University of Wisconsin, 37–50.
Martin, D. W., and V. E. Suomi, 1972: A satellite study of cloud clusters over the tropical north Atlantic ocean. Bull. Amer. Meteor. Soc., 53, 135–156, https://doi.org/10.1175/1520-0477-53.2.135.
Mechem, D. B., R. A. Houze Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 1997–2030, https://doi.org/10.1256/003590002320603502.
Mechem, D. B., S. S. Chen, and R. A. Houze Jr., 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709–736, https://doi.org/10.1256/qj.04.141.
Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 1179–1189, https://doi.org/10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2.
Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104, 543–568, https://doi.org/10.1002/qj.49710444102.
Moncrieff, M. W., 1981: A theory of organised steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 29–50, https://doi.org/10.1002/qj.49710745103.
Moncrieff, M. W., 1992: Organized convective systems: Archetypical dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819–850, https://doi.org/10.1002/qj.49711850703.
Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 1521–1538, https://doi.org/10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.
Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical squall lines. Quart. J. Roy. Meteor. Soc., 102, 373–394, https://doi.org/10.1002/qj.49710243208.
Moncrieff, M. W., and E. Klinker, 1997: Mesoscale cloud systems in the tropical Western Pacific as a process in general circulation models. Quart. J. Roy. Meteor. Soc., 123, 805–827, https://doi.org/10.1002/qj.49712354002.
Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 1171–1187, https://doi.org/10.1175/BAMS-D-11-00233.1.
Moncrieff, M. W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. J. Atmos. Sci., 74, 1363–1380, https://doi.org/10.1175/JAS-D-16-0166.1.
Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386, https://doi.org/10.1175/JAS3604.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1.
Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839, https://doi.org/10.2151/jmsj1965.66.6_823.
Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 4087–4106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.
Newton, C. W., 1950: Structure and mechanisms of the prefrontal squall line. J. Meteor., 7, 210–222, https://doi.org/10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2.
Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279–291, https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.
Pandya, R., and D. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 2924–2951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.
Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 1323–1341, https://doi.org/10.1175/2007JAS2507.1.
Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.
Payne, S. W., and M. M. McGarry, 1977: The relationship of satellite infrared convective activity to easterly waves over West Africa and the adjacent ocean during Phase II of GATE. Mon. Wea. Rev., 105, 413–420, https://doi.org/10.1175/1520-0493(1977)105<0413:TROSIC>2.0.CO;2.
Peters, J. M., and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 1058–1085, https://doi.org/10.1175/MWR-D-14-00070.1.
Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 2643–2664, https://doi.org/10.1175/JAS-D-15-0199.1.
Petersen, W. A., R. C. Cifelli, S. A. Rutledge, B. S. Ferrier, and B. F. Smull, 1999: Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 81–97, https://doi.org/10.1175/1520-0477(1999)080<0081:SDDODT>2.0.CO;2.
Powell, S. W., R. A. Houze Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 2662–2681, https://doi.org/10.1175/JAS-D-11-0251.1.
Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475.
Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 2399–2420, https://doi.org/10.1175/MWR-D-10-05006.1.
Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 2351–2374, https://doi.org/10.1175/MWR-D-15-0058.1.
Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 7359–7366, https://doi.org/10.1002/2014GL061767.
Rasmussen, K. L., A. J. Hill, V. E. Toma, M. D. Zuluaga, P. J. Webster, and R. A. Houze Jr., 2015: Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quart. J. Roy. Meteor. Soc., 141, 1259–1276, https://doi.org/10.1002/qj.2433.
Raymond, D. J., 1984: A wave-CISK model of squall lines. J. Atmos. Sci., 41, 1946–1958, https://doi.org/10.1175/1520-0469(1984)041<1946:AWCMOS>2.0.CO;2.
Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.
Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 1117–1133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.
Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377–1396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.
Ritchie, E. A., J. Simpson, W. T. Liu, J. Halverson, C. Velden, K. F. Brueske, and H. Pierce, 2003: Present day satellite technology for hurricane research: A closer look at formation and intensification. Hurricane! Coping with Disaster, R. Simpson, Ed., Amer. Geophys. Union, 249–289.
Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 1427–1445, https://doi.org/10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.
Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426, https://doi.org/10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2.
Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 324–10 350, https://doi.org/10.1002/2014JD022948.
Saleeby, S. M., S. C. van den Heever, P. J. Marinescu, S. M. Kreidenweis, and P. J. DeMott, 2016: Aerosol effects on the anvil characteristics of mesoscale convective systems. J. Geophys. Res. Atmos., 121, 10 880–10 901, https://doi.org/10.1002/2016JD025082.
Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 1290–1309, https://doi.org/10.1175/MWR3305.1.
Saulo, A. C., M. Nicolini, and S. C. Chou, 2000: Model characterization of the South American low-level flow during the 1997–1998 spring–summer season. Climate Dyn., 16, 867–881, https://doi.org/10.1007/s003820000085.
Saxen, T. R., and S. A. Rutledge, 1998: Surface fluxes and boundary layer recovery in TOGA COARE: Sensitivity to convective organization. J. Atmos. Sci., 55, 2763–2781, https://doi.org/10.1175/1520-0469(1998)055<2763:SFABLR>2.0.CO;2.
Schiro, K. A., F. Ahmed, and D. J. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to mesoscale-organized and unorganized deep convection. Proc. Natl. Acad. Sci. USA, 115, 4577–4582, https://doi.org/10.1073/pnas.1719842115.
Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 1205–1222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.
Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 1739–1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 2235–2255, https://doi.org/10.1256/qj.05.121.
Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 1341–1358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.
Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976, https://doi.org/10.1175/MWR2899.1.
Schumacher, R. S., A. J. Clark, M. Xue, and F. Kong, 2013: Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble. Mon. Wea. Rev., 141, 2778–2801, https://doi.org/10.1175/MWR-D-12-00239.1.
Shupiatsky, A. B., A. I. Korotov, and R. S. Pastushkov, 1976a: Radar investigations of the evolution of clouds in the east Atlantic, in TROPEX-74. Atmosphere (in Russian), Vol. 1, Gidrometeoizdat, 508–514.
Shupiatsky, A. B., G. N. Evseonok, and A. I. Korotov, 1976b: Complex investigations of clouds in the ITCZ with the help of satellite and ship radar equipment, in TROPEX-74. Atmosphere (in Russian), Vol. 1, Gidrometeoizdat, 515–520.
Simpson, J. S., and G. van Helvoirt, 1980: GATE cloud-subcloud interactions examined using a three-dimensional cumulus model. Contrib. Atmos. Phys., 53, 106–134.
Simpson, J. S., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643–2661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.
Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584, https://doi.org/10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.
Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869–2889, https://doi.org/10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.
Sommeria, G., and J. Testud, 1984: COPT81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 4–10, https://doi.org/10.1175/1520-0477(1984)065<0004:CAFEDF>2.0.CO;2.
Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.
Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 3503–3527, https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2.
Tepper, M., 1950: A proposed mechanism of squall lines: The pressure jump line. J. Meteor., 7, 21–29, https://doi.org/10.1175/1520-0469(1950)007<0021:APMOSL>2.0.CO;2.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.
Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 53–72, https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.
Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in a non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762, https://doi.org/10.1002/qj.49710845802.
Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 1078–1098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.
Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877–899, https://doi.org/10.1175/1520-0493(2002)130<0877:IOBMOH>2.0.CO;2.
Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 690–14 694, https://doi.org/10.1073/pnas.0605494103.
van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699–718, https://doi.org/10.1175/2010JAS3603.1.
Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parametrization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 1104–1128, https://doi.org/10.1175/JAS-D-12-0104.1.
Van Weverberg, K., and Coauthors, 2017: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. southern Great Plains. J. Geophys. Res. Atmos., 123, 3612–3644, https://doi.org/10.1002/2017JD027188.
Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 63–77, https://doi.org/10.1175/BAMS-87-1-63.
Virts, K. S., and R. A. Houze Jr., 2015: Variation of lightning in mesoscale convective systems within the MJO. J. Atmos. Sci., 72, 1932–1944, https://doi.org/10.1175/JAS-D-14-0201.1.
Wakimoto, R. M., 1982: The life cycle of the thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.
Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008—April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 1189–1218, https://doi.org/10.1175/2011BAMS3095.1.
Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 1377–1416, https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.
Weisman, M. L., 1992: The genesis of severe long-lived bow echoes. J. Atmos. Sci., 49, 1826–1847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.
Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.
Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 1226–1232, https://doi.org/10.1175/1520-0477(1986)067<1226:SCOPMM>2.0.CO;2.
Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 23–47, https://doi.org/10.1175/MWR3069.1.
Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 59–74, https://doi.org/10.1002/2013MS000269.
Yamada, H., K. Yoneyama, M. Katsumata, and R. Shirooka, 2010: Observations of a super cloud cluster accompanied by synoptic-scale eastward-propagating precipitating systems over the Indian Ocean. J. Atmos. Sci., 67, 1456–1473, https://doi.org/10.1175/2009JAS3151.1.
Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13 288–13 307, https://doi.org/10.1002/2017JD027033.
Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian Oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891, https://doi.org/10.1175/BAMS-D-12-00157.1.
Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110–123, https://doi.org/10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.
Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Climate, 23, 5864–5888, https://doi.org/10.1175/2010JCLI3671.1.
Yuan, J., R. A. Houze Jr., and A. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 1653–1674, https://doi.org/10.1175/2011JAS3687.1.
Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 1964–1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.
Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814, https://doi.org/10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.
Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.
Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58, https://doi.org/10.1175/0065-9401(2003)029<0049:CSVOHT>2.0.CO;2.
Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 2458–2469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.
Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 1057–1071, https://doi.org/10.1175/BAMS-87-8-1057.
Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 2713–2725, https://doi.org/10.1175/JAS-D-12-0311.1.