Ahlstrom, M., and Coauthors, 2013: Knowledge is power: Efficiently integrating wind energy and wind forecasts. IEEE Power Energy Mag., 11, 45–52, https://doi.org/10.1109/MPE.2013.2277999.
Akimoto, H., 2003: Global air quality and pollution. Science, 302, 1716–1719, https://doi.org/10.1126/science.1092666.
Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95–110, https://doi.org/10.1016/j.apenergy.2015.08.011.
Allwine, K. J., and J. E. Flaherty, 2007: Urban dispersion program overview and MID05 field study summary. Pacific Northwest National Laboratory Doc. PNNL-16696, 63 pp., https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-16696.pdf..
Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of Urban 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521–536, https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2.
Allwine, K. J., M. Leach, L. Stockham, J. Shinn, R. Hosker, J. Bowers, and J. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.1, https://ams.confex.com/ams/84Annual/techprogram/paper_74349.htm .
Almeshaiei, E., and H. Soltan, 2011: A methodology for electric power load forecasting. Alexandria Eng. J., 50, 137–144, https://doi.org/10.1016/j.aej.2011.01.015.
Andrle, S. J., D. Kroeger, D. Giesman, and N. Burdine, 2002: Highway maintenance concept vehicle: Phase IV final report. CTRE Management Project 99-42, 83 pp., https://intrans.iastate.edu/app/uploads/2018/03/concept4.pdf.
Appel, K. W., and Coauthors, 2017: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017.
Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 2183–2199, https://doi.org/10.1007/s00382-013-1789-6.
Arnfield, A. J., 2003: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859.
Arya, S. P., 1999: Air Pollution Meteorology and Dispersion. Oxford University Press, 310 pp.
Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the Southeast United States. Climatic Change, 113, 481–498, https://doi.org/10.1007/s10584-011-0324-1.
Askelson, M. A., C. Theisen, J. Tilley, and E. Townsend, 2013: The Pavement Precipitation Accumulation Estimation System—Further development. Aurora Project Doc. 2009-05, 151 pp., https://intrans.iastate.edu/app/uploads/2019/05/AP2009-05Report.pdf.
Astitha, M., H. Y. Luo, S. T. Rao, C. Hogrefe, R. Mathur, and N. Kumar, 2017: Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ., 164, 102–116, https://doi.org/10.1016/j.atmosenv.2017.05.020.
AWEA, 2018: U.S. Wind Industry Fourth Quarter 2017 Market Report. Accessed 29 January 2018, https://www.awea.org/2017-market-reports.
Baik, J.-J., Y.-H. Kim, J.-J. Kim, and J.-Y. Han, 2007: Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol., 89, 73–81, https://doi.org/10.1007/s00704-006-0254-4.
Barad, M. L., Ed., 1958a: Project Prairie Grass: A field program in diffusion. Vol. I, Air Force Cambridge Research Center Geophysical Research Paper 59, AFCRF-TR-58-235, 300 pp.
Barad, M. L., Ed., 1958b: Project Prairie Grass: A field program in diffusion. Vol. II, Air Force Cambridge Research Center Geophysical Research Paper 59, AFCRF-TR-58-235. 222 pp.
Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Bessa, R. J., and Coauthors, 2017: Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry. Energies, 10, 1402, https://doi.org/10.3390/en10091402.
Bhaduri, B., M. Minner, S. Tatalovich, and J. Harbor, 2001: Long-term hydrologic impact of urbanization: A tale of two models. J. Water Resour. Plann. Manage., 127, 13–19, https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(13).
Bieringer, P. E., G. S. Young, L. M. Rodriguez, A. J. Annunzio, F. Vandenberghe, and S. E. Haupt, 2017: Paradigms and commonalities in atmospheric source term estimation methods. Atmos. Environ., 156, 102–112, https://doi.org/10.1016/j.atmosenv.2017.02.011.
Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507–516, https://doi.org/10.1016/S1352-2310(99)00374-X.
Boselly, S. E., III, 2001: Benefit/Cost study of RWIS and anti-icing technologies. National Cooperative Highway Research Program Rep. 20-7(117), 31 pp., http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-07(117)_FR.pdf.
Boselly, S. E., III, G. S. Doore, J. E. Thornes, C. Ulberg, and D. D. Ernst, 1993: Road Weather Information Systems: Volume 1: Research report. Strategic Highway Research Program SHRP-H-350, 219 pp., http://onlinepubs.trb.org/onlinepubs/shrp/shrp-h-350.pdf.
Bounoua, and Coauthors, 2015: Impact of urbanization on US surface climate. Environ. Res. Lett., 10, 101001, https://doi.org/10.1088/1748-9326/10/8/084010.
Bouzerdoum, M., A. Mellit, and A. Pavan, 2013: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy, 98, 226–235, https://doi.org/10.1016/j.solener.2013.10.002.
Braham, R. R., 1981: Urban precipitation processes. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 75–116.
Calder, K. L., 1961: Atmospheric diffusion of particulate matter considered as a boundary value problem. J. Meteor., 18, 413–420, https://doi.org/10.1175/1520-0469(1961)018<0413:ADOPMC>2.0.CO;2.
Carruthers, D. J., R. J. Holroyd, J. C. R. Hunt, W.-S. Weng, A. G. Robins, D. D. Apsley, D. J. Thompson, and F. B. Smith, 1994: UK-ADMS: A new approach to modelling dispersion in the earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn., 52, 139–153, https://doi.org/10.1016/0167-6105(94)90044-2.
Center for Transportation Research and Education, 2007: Highway Maintenance Concept Vehicle, Phase IV. Iowa State University, accessed 12 February 2918, https://intrans.iastate.edu/research/completed/highway-maintenance-concept-vehicle-phase-iv/.
Centers for Disease Control and Prevention, 2010: Commercial fishing deaths—United States, 2000–2009. Morbidity Mortal. Wkly. Rep., 59, 842–845.
Chang, J. C., and S. R. Hanna, 2004: Air quality model performance. Meteor. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7.
Changnon, S. A., Ed., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.
Changnon, S. A., 2005: Applied climatology: The golden age has begun. Bull. Amer. Meteor. Soc., 86, 915–919, https://doi.org/10.1175/BAMS-86-7-915.
Changnon, S. A., 2006: Railroads and Weather: From Fogs to Floods and Heat to Hurricanes, the Impacts of Weather and Climate on American Railroading. Amer. Meteor. Soc., 124 pp.
Cheng, W. Y. Y., Y. Liu, A. Bourgeois, Y. Wu, and S. E. Haupt, 2017: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renew. Energy, 107, 340–351, https://doi.org/10.1016/j.renene.2017.02.014.
Chow, C. W., N. Urquhart, M. Lave, A. Dominquez, J. Kleissl, J. Shields, and B. Washom, 2011: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy, 85, 2881–2893, https://doi.org/10.1016/j.solener.2011.08.025.
Chowdhury, M. A., and A. Sadek, 2003: Fundamentals of Intelligent Transportation Systems Planning. Artech House, 210 pp.
Chu, Y., H. T. C. Pedro, M. Li, and C. F. M. Coimbra, 2015: Real-time forecasting of solar irradiance ramps with smart image processing. Sol. Energy, 114, 91–104, https://doi.org/10.1016/j.solener.2015.01.024.
Cimorelli, A., S. Perry, A. Venkatram, J. Weil, R. Paine, R. Wilson, R. Lee, W. Peters, and R. Brode, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44, 682–693, https://doi.org/10.1175/JAM2227.1.
Clifton, A., B.-M. Hodge, C. Draxl, J. Badger, and A. Habte, 2017: Wind and solar resource data sets. Wiley Interdiscip. Rev.: Energy Environ., 7, e276, https://doi.org/10.1002/wene.276.
Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46, 477–493, https://doi.org/10.1175/JAM2462.1.
Craig, M. T., S. Cohen, J. Macknick, C. Draxl, O. J. Gerra, M. Sengupta, S. E. Haupt, B.-M. Hodge, and C. Brancucci, 2018: A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renew. Sustain. Energy Rev., 98, 255–267, https://doi.org/10.1016/j.rser.2018.09.022.
Curtright, A. E., and K. Apt, 2008: The character of power output from utility-scale photovoltaic systems. Prog. Photovolt. Res. Appl., 16, 241–247, https://doi.org/10.1002/pip.786.
Dabberdt, W. F., and Coauthors, 2000: Forecast issues in the urban zone: Report of the10th prospectus development team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81, 2047–2064, https://doi.org/10.1175/1520-0477(2000)081<2047:FIITUZ>2.3.CO;2.
Debbage, N., and J. M. Shepherd, 2015: The urban heat island effect and city contiguity. Comput. Environ. Urban Syst., 54, 181–194, https://doi.org/10.1016/j.compenvurbsys.2015.08.002.
Debbage, N., and J. M. Shepherd, 2018: The influence of urban development patterns on streamflow characteristics in the Charlanta megaregion. Water Resour. Res., 54, 3728–3747, https://doi.org/10.1029/2017WR021594.
Debbage, N., and J. M. Shepherd, 2019: Urban influences on the spatiotemporal characteristics of runoff and precipitation during the 2009 Atlanta flood. J. Hydrometeor., 20, 3–21, https://doi.org/10.1175/JHM-D-18-0010.1.
Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 3498–3516, https://doi.org/10.1175/MWR-D-12-00281.1.
Dobschinski, J., and Coauthors, 2017: Uncertainty forecasting in a nutshell: Prediction models designed to prevent significant errors. IEEE Power Energy Mag., 15, 40–49, https://doi.org/10.1109/MPE.2017.2729100.
DOE, 2018: Atmosphere to Electrons. Accessed 31 January 2018, https://a2e.energy.gov/.
Drobot, S., M. Chapman, E. Schuler, G. Wiener, W. Mahoney III, P. Pisano, and B. McKeever, 2010a: Improving road weather hazard products with vehicle probe data: Vehicle data translator quality-checking procedures. Transp. Res. Rec., 2169, 128–140, https://doi.org/10.3141/2169-14.
Drobot, S., M. Chapman, P. A. Pisano, and B. B. McKeever, 2010b: Using vehicles as mobile weather platforms. Data and Mobility, J. Düh et al., Eds., Advances in Intelligent and Soft Computing, Vol. 81, Springer, 203–213, https://doi.org/10.1007/978-3-642-15503-1_18.
Dubus, L., 2014: Weather and climate and the power sector: Needs, recent developments, and challenges. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. Haupt, Eds. Springer, 379–398, https://doi.org/10.1007/978-1-4614-9221-4_18.
Dubus, L., S. Muralidharan, and A. Troccoli, 2018a: What does the energy industry require from meteorology? Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 41–63, https://doi.org/10.1007/978-3-319-68418-5_4.
Dubus, L., A. Troccoli, S. E. Haupt, M. S. Boulahya, and S. Dorling, 2018b: Lessons learned establishing a dialogue between the energy industry and the meteorological community and a way forward. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 179–190, https://doi.org/10.1007/978-3-319-68418-5_13.
Dutton, J. A., R. P. James, and J. D. Ross, 2018: Probabilistic forecasts for energy: Weeks to a century or more. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 161–177, https://doi.org/10.1007/978-3-319-68418-5_12.
EIA, 2018: Frequently asked questions. Accessed 22 January 2018, https://www.eia.gov/tools/faqs/faq.php?id=86&t=1.
Ela, E., V. Diakov, E. Ibanez, and M. Heaney, 2013: Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales. National Renewable Energy Laboratory Tech. Rep. NREL/TP-5500-58274, 41 pp., http://www.nrel.gov/docs/fy13osti/58274.pdf.
Eliasson, I., 2000: The use of climate knowledge in urban planning. Landscape Urban Plann., 48, 31–44, https://doi.org/10.1016/S0169-2046(00)00034-7.
EPA, 1995: User’s guide for the Industrial Source Complex (ISC3) dispersion model: Volume II—Description of model algorithms. Environmental Protection Agency Rep. EPA-454/b-95-003b, 120 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=000031VJ.txt.
EPA, 2004: AERMOD: Description of model formulation. Environmental Protection Agency Rep. EPA-454/R-03-004, 91 pp., http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf.
EPA, 2007: ALOHA users’ manual. Environmental Protection Agency Rep., 190 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003UZB.txt.
Federal Highway Administration, 2006: Empirical studies on traffic flow in inclement weather. FHWA Publ. FHWA-HOP-07-073, 108 pp., https://ops.fhwa.dot.gov/publications/weatherempirical/weatherempirical.pdf.
Feinberg, E. A., and D. Genethlion, 2005: Load forecasting. Applied Mathematics for Restructured Electric Power System: Optimization, Control, and Computational Intelligence, J. H. Chow, F. F. Wu, and J. Momoh, Eds., Springer, 269–283.
Finnish Meteorological Institute, 2012: Economic value of weather forecasts on transportation – Impacts of weather forecast quality developments to the economic effects of severe weather. FMI Doc. D5.2, 92 pp., http://www.mowe-it.eu/wordpress/wp-content/docs/ewent/D5_2_16_02_2012_revised_final.pdf.
Fleming, P. A., and Coauthors, 2014: Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy, 70, 211–218, https://doi.org/10.1016/j.renene.2014.02.015.
Fleming, P. A., and Coauthors, 2015: Simulation comparison of wake mitigation control strategies for a two-turbine case. Wind Energy, 18, 2135–2143, https://doi.org/10.1002/we.1810.
Fujibe, F., 2003: Long-term surface wind changes in the Tokyo metropolitan area in the afternoon of sunny days in the warm season. J. Meteor. Soc. Japan Ser. II, 81, 141–149, https://doi.org/10.2151/jmsj.81.141.
Gaffin, S. R., and Coauthors, 2012: Bright is the new black—Multi-year performance of high-albedo roofs in an urban climate. Environ. Res. Lett., 7, 014029, https://doi.org/10.1088/1748-9326/7/1/014029.
Gagne, D. J., II, A. McGovern, S. E. Haupt, and J. K. Williams, 2017: Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Sol. Energy, 150, 383–393, https://doi.org/10.1016/j.solener.2017.04.031.
Garuma, G., 2017: Review of urban surface parameterizations for numerical climate models. Urban Climate, 24, 830–851, https://doi.org/10.1016/j.uclim.2017.10.006.
Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 37–41, https://doi.org/10.1038/nclimate1656.
Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 2909–2914, https://doi.org/10.1073/pnas.1322280111.
Gevitz, K., R. Madera, C. Newbern, J. Lojo, and C. C. Johnson, 2017: Risk of fall-related injury due to adverse weather events, Philadelphia, Pennsylvania, 2006-2011. Public Health Rep., 132, 53S–58S, https://doi.org/10.1177/0033354917706968.
Giebel, G., and G. Kariniotakis, 2007: Best practice in short-term forecasting: A users guide. European Wind Energy Conf. and Exhibition, Milan, Italy, European Wind Energy Association, 5 pp.
Gifford, F. A., 1961: Use of routine meteorological observations for estimating atmospheric dispersion. Nucl. Saf., 2 (4), 47–57.
Gifford, F.A., 1975: Atmospheric dispersion models for environmental pollution applications. Lectures on Air Pollution and Environmental Impact Analysis, Amer. Meteor. Soc., 35–58.
Gochis, D. J., W. Yu, and D. N. Yates, 2015: The NCAR WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/wrf_hydro/.
Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, 2008: Global change and the ecology of cities. Science, 319, 756–760, https://doi.org/10.1126/science.1150195.
Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84, 3–22, https://doi.org/10.1007/s00704-005-0140-5.
Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 1268–1292, https://doi.org/10.1175/2010JAMC2354.1.
Haas, R., and E. Bedsole, 2011: Results of the Clarus demonstrations: Evaluation of enhanced road weather forecasting enabled by Clarus. Federal Highway Administration Rep. FHWA-JPO-11-116, 76 pp., https://rosap.ntl.bts.gov/view/dot/3355.
Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663–675, https://doi.org/10.1002/qj.2499.
Hage, K., 1975: Urban-rural humidity differences. J. Appl. Meteor., 14, 1277–1283, https://doi.org/10.1175/1520-0450(1975)014<1277:URHD>2.0.CO;2.
Hall, P., 2019: Crashes snarl I-78 west; icy roads around Lehigh Valley as wintry mix moves into area. The Morning Call, 7 January, https://www.mcall.com/news/breaking/mc-pol-b-crash-snarls-i78-20190107-story.html.
Hanna, S. R., and J. C. Chang, 2001: Use of the Kit Fox field data to analyze dense gas dispersion modeling issues. Atmos. Environ., 35, 2231–2242, https://doi.org/10.1016/S1352-2310(00)00481-7.
Hanna, S. R., and J. C. Chang, 2012: Acceptance criteria for urban dispersion model evaluation. Meteor. Atmos. Phys., 116, 133–146, https://doi.org/10.1007/s00703-011-0177-1.
Hanna, S. R., and G. Young, 2017: The need for harmonization of methods for finding locations and magnitudes of air pollution sources using observations of concentrations and wind fields. Atmos. Environ., 148, 361–363, https://doi.org/10.1016/j.atmosenv.2016.11.008.
Hanna, S. R., G. A. Briggs, and R. P. Hosker Jr., 1982: Handbook on atmospheric diffusion. Dept. of Energy Rep. DOE/TIC-11223, 102 pp., https://www.osti.gov/servlets/purl/5591108/.
Hart, R., J. J. Mewes, B. W. Hershey, L. O. Osborne Jr., and D. L. Huft, 2008: An overview of implementation and deployment of the Pooled Fund Study Maintenance Decision Support System. Transportation Research Circular E-C126 Fourth National Conf. Surface Trans. Wea. and Seventh Int. Symp. Snow Removal and Ice Control Tech., Indianapolis, IN, Transportation Research Board, 229–239, http://www.trb.org/Publications/Blurbs/160000.aspx.
Hart, R., L. F. Osborne Jr., J. J. Mewes, M. A. Askelson, and J. L. Hershey, 2012: An evaluation of a simulation of sub-pavement conditions as they affect the implementation and removal of seasonal load restrictions.ortationearchcular 2012 Int. Conf. on Winter Maintenance and Surface Trans. Wea., Coralville, IA, Transportation Research Board, 478–490, http://www.trb.org/Publications/Blurbs/167060.aspx.
Hassanzadeh, M., M. Etezadi-Amoli, and M. S. Fadali, 2010: Practical approach for sub-hourly and hourly prediction of PV power output. North American Power Symp. 2010, Arlington, TX, IEEE, 1–5, https://doi.org/10.1109/NAPS.2010.5618944.
Haupt, S. E., and L. Delle Monache, 2014: Understanding ensemble prediction: How probabilistic wind power prediction can help in optimizing operations. WindTech International, Vol. 10, No. 6, WindTech International, Groningen, The Netherlands, 27–29, https://www.windtech-international.com/editorial-features/understanding-ensemble-prediction.
Haupt, S. E., and W. P. Mahoney, 2015: Taming wind power with better forecasts. IEEE Spectrum, November issue, 46–52, https://spectrum.ieee.org/green-tech/wind/taming-wind-power-with-better-forecasts.
Haupt, S. E., and B. Kosovic, 2017: Variable generation power forecasting as a big data problem. IEEE Trans. Sustainable Energy, 8, 725–732, https://doi.org/10.1109/TSTE.2016.2604679.
Haupt, S. E., W. P. Mahoney, and K. Parks, 2014: Wind power forecasting. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 295–318.
Haupt, S. E., and Coauthors, 2015: First year report of the A2e Mesoscale to Microscale Coupling Project. Pacific Northwest National Laboratory Rep. PNNL-25108, 124 pp., https://doi.org/10.13140/RG.2.2.21572.01927.
Haupt, S. E., J. Copeland, W. Y. Y. Cheng, C. Amman, Y. Zhang, and P. Sullivan, 2016: A method to assess the wind and solar resource and to quantify interannual variability over the United States under current and projected future climate. J. Appl. Meteor. Climatol., 55, 345–363, https://doi.org/10.1175/JAMC-D-15-0011.1.
Haupt, S. E., and Coauthors, 2017a: Impact of distributed PV on demand load forecasts. Sol. Energy, 157, 542–551, https://doi.org/10.1016/j.solener.2017.08.049.
Haupt, S. E., P. Jimenez, J. A. Lee, and B. Kosovic, 2017b: Principles of meteorology and numerical weather prediction. Renewable Energy Forecasting: From Models to Applications, G. Kariniotakis, Ed., Elsevier, 3–28.
Haupt, S. E., and Coauthors, 2017c: Second year report of the Atmosphere to Electrons Mesoscale to Microscale Coupling Project: Nonstationary modeling techniques and assessment. Pacific Northwest National Laboratory Rep. PNNL-26267, 156 pp., https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26267.pdf.
Haupt, S. E., A. Anderson, L. Berg, B. Brown, M. Churchfield, C. Draxl, C. Kalb, and E. Koo, 2017d: Third year report of the Atmosphere to Electrons Mesoscale to Microscale Coupling Project. Pacific Northwest National Laboratory Rep. PNNL-28259, 137 pp.
Haupt, S. E., and Coauthors, 2018: Building the Sun4Cast System: Improvements in solar power forecasting. Bull. Amer. Meteor. Soc., 99, 121–136, https://doi.org/10.1175/BAMS-D-16-0221.1.
Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.
Haupt, S. E., B. Kosović, S. McIntosh, F. Chen, K. Miller, M. Shepherd, M. Williams, and S. Drobot, 2019b: 100 years of progress in applied meteorology. Part III: Additional applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0012.1.
Haupt, S. E., B. Kosovic, J. A. Lee, and P. Jimenez, 2019c: Mesoscale modeling of the atmosphere. Modeling and Simulation in Wind Plant Design and Analysis, P. Veers, Ed., IET Press, in press.
Haupt, S. E., and Coauthors, 2019d: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-18-0033.1, in press.
Hay, W. W., 1957: Effects of weather on railroad operation, maintenance, and construction. Industrial Operations under Extremes of Weather, Meteor. Monogr., No. 9, Amer. Meteor. Soc., 10–36.
Henningsen, R. F., 2000: Study of greenhouse gas emissions from ships. International Maritime Organization Rep. Issue 2, 170 pp., http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.1805&rep=rep1&type=pdf.
Hill, C. J., 2013: Concept of operations for road weather connected vehicle applications. Rep. FHWA-JPO-13-047, 95 pp., https://rosap.ntl.bts.gov/view/dot/3372.
Hodson, R., 2016: The world is in the midst of the largest wave of urban growth in history. Nature, 531, S49, https://doi.org/10.1038/531S49a.
Hoff, T., 2016: Behind-the-meter (BTM) PV forecast integration with load forecasting. Utility Variable Generation Integration Group Forecasting Workshop, Denver, CO, Utility Variable-Generation Integration Group, 17 pp., https://www.esig.energy/download/behind-meter-btm-pv-forecast-integration-load-forecasting-dr-thomas-hoff/?wpdmdl=1773&refresh=5d5e1997c8e761566448023.
Hong, T., 2014: Energy forecasting: Past, present, and future. Foresight, 32, 43–48.
Hong, W. C., 2009: Electric load forecasting by support vector model. Appl. Math. Model., 33, 2444–2454, https://doi.org/10.1016/j.apm.2008.07.010.
Hooke, W. H., 2014: Living on the Real World: How Thinking and Acting Like Meteorologists Will Help Save the Planet. Amer. Meteor. Soc., 251 pp.
Horton, R. E., 1921: Thunderstorm-breeding spots. Mon. Wea. Rev., 49, 193, https://doi.org/10.1175/1520-0493(1921)49<193a:TS>2.0.CO;2.
Howard, L., 1833: The Climate of London. Harvey and Darton, 221 pp., https://www.urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf.
Huang, H., J. Xu, Z. Peng, S. Yoo, D. Yu, D. Huang, and H. Qin, 2013: Cloud motion estimation for short term solar irradiance prediction. IEEE Int. Conf. on Smart Grid Communications, Vancouver, BC, Canada, IEEE, 696–701, https://doi.org/10.1109/SmartGridComm.2013.6688040.
Huang, M., Z. Gao, S. Miao, F. Chen, M. A. LeMone, J. Li, F. Hu, and L. Wang, 2017: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound.-Layer Meteor., 162, 503–522, https://doi.org/10.1007/s10546-016-0205-2.
Hueging, H., R. Haas, K. Born, D. Jacob, and J. G. Pinto, 2013: Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteor. Climatol., 52, 903–917, https://doi.org/10.1175/JAMC-D-12-086.1.
Hunt, A. H., and P. Watkiss, 2011: Climate change impacts and adaptation in cities: A review of the literature. Climatic Change, 104¸13–49, https://doi.org/10.1007/s10584-010-9975-6.
Hunt, J. C., Y. D. Aktas, A. Mahalov, M. Moustaoui, F. Salamanca, and M. Georgescu, 2017: Climate change and growing megacities: Hazards and vulnerability. Proc. Inst. Civ. Eng.: Eng. Sustainability, 171, 314–326, https://doi.org/10.1680/jensu.16.00068.
Hutyra, L. R., R. Duren, K. R. Gurney, N. Grimm, E. A. Kort, E. Larson, and G. Shrestha, 2014: Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future, 2, 473–495, https://doi.org/10.1002/2014EF000255.
HydroQuebec, 2018: Sustainable development. Accessed 1 February 2018, http://www.hydroquebec.com/sustainable-development/energy-environment/adaptation-climate-change.html.
Idso, C. D., S. B. Idso, and R. C. Balling Jr., 2001: An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos. Environ., 35, 995–1000, https://doi.org/10.1016/S1352-2310(00)00412-X.
IEA, 2017: World Energy Outlook 2017. Accessed 14 November 2017, https://www.iea.org/weo2017/.
IEA, 2018: Hydropower. Accessed 16 October 2018, https://www.iea.org/topics/renewables/hydropower/.
Imhoff, M. L., L. Bounoua, R. DeFries, W. T. Lawrence, D. Stutzer, C. J. Tucker, and T. Ricketts, 2004: The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ., 89, 434–443, https://doi.org/10.1016/j.rse.2003.10.015.
India Ministry of Power, 2018: Central Electricity Authority. Accessed 18 October 2018, http://www.cea.nic.in/monthlyinstalledcapacity.html.
ITS International, 2017: Applied Information’s app gets Marietta connected. Accessed 26 August 2018, http://www.itsinternational.com/categories/networking-communication-systems/features/applied-informations-app-gets-marietta-connected/.
Jacobson, M. Z., 2010: Enhancement of local air pollution by urban CO2 domes. Environ. Sci. Technol., 44, 2497–2502, https://doi.org/10.1021/es903018m.
Jimenez, P. A., and Coauthors, 2016a: WRF-Solar: An augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 1249–1264, https://doi.org/10.1175/BAMS-D-14-00279.1.
Jimenez, P. A., S. Alessandrini, S. E. Haupt, A. Deng, B. Kosovic, J. A. Lee, and L. Delle Monache, 2016b: Role of unresolved clouds on short-range global horizontal irradiance predictability. Mon. Wea. Rev., 144, 3099–3107, https://doi.org/10.1175/MWR-D-16-0104.1.
Jin, M., and J. M. Shepherd, 2008: Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: Urban land versus ocean. J. Geophys. Res., 113, D24S90, https://doi.org/10.1029/2008JD010276.
Jin, M., J. M. Shepherd, and M. D. King, 2005: Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res., 110, D10S20, https://doi.org/10.1029/2004JD005081.
Johnson, B., and J. M. Shepherd, 2018: An urban-based climatology of winter precipitation in the northeast United States. Urban Climate, 24, 205–220, https://doi.org/10.1016/j.uclim.2018.03.003.
Kanda, M., 2006: Progress in the scale modeling of urban climate. Theor. Appl. Climatol., 84, 23–33, https://doi.org/10.1007/s00704-005-0141-4.
KC, B., J. M. Shepherd, and C. J. Gaither, 2015: Climate change vulnerability assessment in Georgia. Appl. Geogr., 62, 62–74, https://doi.org/10.1016/j.apgeog.2015.04.007.
Khattak, A. J., X. Pan, B. Williams, N. Rouphail, and Y. Fan, 2008: Traveler information delivery mechanisms: Impact on consumer behavior. Transp. Res. Rec., 2069, 77–84, https://doi.org/10.3141/2069-10.
Klein, P., and J. V. Clark, 2007: Flow variability in a North American downtown street Canyon. J. Appl. Meteor. Climatol., 46, 851–877, https://doi.org/10.1175/JAM2494.1.
Kleissl, J., Ed., 2013: Solar Energy Forecasting and Resource Assessment. Academic Press, 462 pp.
Kratzer, P. A., 1937: Das Stadtklima (Urban Climate). F. Vieweg und Sohn, 143 pp.
Kratzer, P. A., 1956: Das Stadtklima (Urban Climate). 2nd ed. F. Vieweg und Sohn, 184 pp.
Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 1899–1910, https://doi.org/10.1175/JAM2169.1.
Lampinen, M., 2018: Smart cities and the vehicle ownership shift. Automotive World, accessed 26 August 2018, https://www.automotiveworld.com/articles/smart-cities-vehicle-ownership-shift/.
Landsberg, H. E., 1956: The climate of towns. Man’s Role in Changing the Face of the Earth, Vol. 2, W. L. Thomas, Jr., Ed., University of Chicago Press, 584–606.
Landsberg, H. E., 1970: Man-made climatic changes: Man’s activities have altered the climate of urbanized areas and may affect global climate in the future. Science, 170, 1265–1274, https://doi.org/10.1126/science.170.3964.1265.
Lawrence, M., P. Nyugen, J. Skolnick, J. Symoun, J. Hunt, and R. Alfelor, 2015: Transportation systems management and operations benefit-cost analysis compendium. Federal Highway Administration Rep. FHWA-HOP-14-032, 232 pp., https://ops.fhwa.dot.gov/publications/fhwahop14032/fhwahop14032.pdf.
Lazo, J. K., 2017: Economic assessment of hydro-met services and products: A value chain approach. 12th Symp. on Societal Applications: Policy, Research, and Practice, Seattle, WA, Amer. Meteor. Soc., 5B.4, https://ams.confex.com/ams/97Annual/webprogram/Paper312160.html.
Lazo, J. K., K. Parks, S. E. Haupt, and T. Jensen, 2017: Economic value of research to improve solar power forecasting. Eighth Conf. on Weather, Climate, Water and the New Energy Economy, Seattle, WA, Amer. Meteor. Soc., 7.6, https://ams.confex.com/ams/97Annual/webprogram/Paper313289.html.
Lee, H., N. Aydin, Y. Choi, S. Lekhavat, and Z. Irani, 2017: A decision support system for vessel speed decision in maritime logistics using weather archive big data. Comput. Oper. Res., 98, 330–342, https://doi.org/10.1016/j.cor.2017.06.005.
Lee, K. Y., Y. T. Cha, and J. H. Park, 1992: Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst., 7, 124–132, https://doi.org/10.1109/59.141695.
Lee, P., and Coauthors, 2017: NAQFC developmental forecast guidance for fine particulate matter (PM2.5). Wea. Forecasting, 32, 343–360, https://doi.org/10.1175/WAF-D-15-0163.1.
LeMone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.
Leopold, L. B., 1968: Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. Geological Survey Circular 554, 26 pp., https://pubs.usgs.gov/circ/1968/0554/report.pdf.
Limber, M., S. Drobot, and T. Fowler, 2010: Clarus quality checking algorithm documentation report. Federal Highway Administration Rep. FHWA-JPO-11-075, 18 pp., https://rosap.ntl.bts.gov/view/dot/3313.
Lopez, A., B. Roberts, D. Heimiller, N. Blair, and G. Porro, 2012: U.S. renewable energy technical potentials: A GIS-based analysis. National Renewable Energy Laboratory Tech. Rep. NREL/TP-6A20-51946, 32 pp., https://www.nrel.gov/docs/fy12osti/51946.pdf.
Lorenz, E., J. Kuhnert, and D. Heinemann, 2014: Overview of irradiance and photovoltaic power prediction. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 429–454, https://doi.org/10.1007/978-1-4614-9221-4_21.
Lowry, W. P., 1998: Urban effects on precipitation amount. Prog. Phys. Geogr., 22, 477–520, https://doi.org/10.1177/030913339802200403.
Lowry, W. P., and S. C. Lowry, 1988: Atmospheric Ecology for Designers and Planners. Peavine Publications, 435 pp.
Machta, L., H. Hamilton, L. F. Hubert, R. J. List, and K. M. Nagler, 1957: Airborne measurements of atomic debris. J. Meteor., 14, 165–175, https://doi.org/10.1175/1520-0469(1957)014<0165:AMOAD>2.0.CO;2.
Mahoney, W. P., III, and J. M. O’Sullivan, 2013: Realizing the potential of vehicle-based observations. Bull. Amer. Meteor. Soc., 94, 1007–1018, https://doi.org/10.1175/BAMS-D-12-00044.1.
Mahoney, W. P., III, S. Drobot, P. Pisano, B. McKeever, and J. O’Sullivan, 2010: Vehicles as mobile weather observation systems. Bull. Amer. Meteor. Soc., 91, 1179–1182, https://doi.org/10.1175/2010BAMS2954.1.
Mahoney, W. P., III, and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670–682, https://doi.org/10.1109/TSTE.2012.2201758.
Manfredi, J., T. Walters, G. Wilke, L. Osborne, R. Hart, T. Incrocci, and T. Schmitt, 2005: Road Weather Information System environmental sensor station siting guidelines. Federal Highway Administration Rep. FHWA-HOP-05-026, 52 pp., https://ops.fhwa.dot.gov/publications/ess05/ess05.pdf.
Manfredi, J., and Coauthors, 2008: Road Weather Information System environmental sensor station siting guidelines, version 2.0. Federal Highway Administration Rep. FHWA-HOP-05-026 and FHWA-JPO-09-012, 85 pp., https://rosap.ntl.bts.gov/view/dot/3290.
Marquez, R., and C. F. M. Coimbra, 2013: Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy, 91, 327–336, https://doi.org/10.1016/j.solener.2012.09.018.
McCall, T. C., 2017: S.S. Edmund Fitzgerald online. Accessed 4 February 2018, http://www.ssedmundfitzgerald.org/.
McCandless, T. C., S. E. Haupt, and G. S. Young, 2015: A model tree approach to forecasting solar irradiance variability. Sol. Energy, 120, 514–524, https://doi.org/10.1016/j.solener.2015.07.020.
McCandless, T. C., S. E. Haupt, and G. S. Young, 2016a: A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. Renewable Energy, 89, 351–359, https://doi.org/10.1016/j.renene.2015.12.030.
McCandless, T. C., G. S. Young, S. E. Haupt, and L. M. Hinkelman, 2016b: Regime-dependent short-range solar irradiance forecasting. J. Appl. Meteor. Climatol., 55, 1599–1613, https://doi.org/10.1175/JAMC-D-15-0354.1.
McCracken, R., 2018: Global wind capacity additions stall in 2017, but remain above 50 GW. S&P Global, accessed 26 February 2018, https://www.platts.com/latest-news/electric-power/london/global-wind-capacity-additions-stall-in-2017-26891792.
Mellit, A., 2008: Artificial intelligence technique for modeling and forecasting of solar radiation data: A review. Int. J. Artif. Intell. Soft Comput., 1, 52–76, https://doi.org/10.1504/IJAISC.2008.021264.
Mellit, A., A. Massi Pavan, and V. Lughi, 2014: Short-term forecasting of power production in a large-scale photovoltaic plant. Sol. Energy, 105, 401–413, https://doi.org/10.1016/j.solener.2014.03.018.
Miller, K. A., A. F. Hamlet, D. S. Kenney, and K. T. Redmond, Eds., 2016: Water Policy and Planning in a Variable and Changing Climate. CRC Press, 452 pp.
Miller, S. D., A. K. Heidinger, and M. Sengupta, 2013: Physically based satellite methods. Solar Energy Forecasting, J. Kleissl, Ed., Elsevier, 504 pp.
Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2018: Short-term solar irradiance forecasting via satellite/model coupling. Sol. Energy, 168, 102–117, https://doi.org/10.1016/j.solener.2017.11.049.
Mills, G., and Coauthors, 2010: Climate information for improved planning and management of mega cities (needs perspective). Procedia Environ. Sci., 1, 228–246, https://doi.org/10.1016/j.proenv.2010.09.015.
Mirocha, J. D., and Coauthors, 2018: Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary layer flows for wind energy applications. Wind Energy Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018.
Mitra, C., and J. Shepherd, 2016: Urban precipitation: A global perspective. Routledge Handbook of Urbanization and Global Environment Change, K. C. Seto, W. D. Solecki, and C. A. Griffith, Eds., Routledge, 152–168.
Monin, A., and A. Obukhov, 1953: Dimensionless characteristics of turbulence in the layer of atmosphere near the ground. Dokl. Akad. Nauk USSR, 93, 257–267.
Morf, H., 2014: Sunshine and cloud cover prediction based on Markov processes. Sol. Energy, 110, 615–626, https://doi.org/10.1016/j.solener.2014.09.044.
Morris, A. E. J., 1994: History of Urban Form before the Industrial Revolutions. Prentice Hall, 456 pp.
Morrison, J., 2016: Air pollution goes back way further than you think. Smithsonian.com, accessed 15 October 2018, https://www.smithsonianmag.com/science-nature/air-pollution-goes-back-way-further-you-think-180957716/.
Muñoz-Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst., 9, 1572–1594, https://doi.org/10.1002/2017MS000960.
Myers, W., G. Wiener, S. Linden, and S. E. Haupt, 2011: A consensus forecasting approach for improved turbine hub height wind speed predictions. Proc. WindPower 2011, Anaheim, CA, Amer. Wind Energy Assoc., 6 pp., https://opensky.ucar.edu/islandora/object/conference%3A3296.
National Research Council, 2004: Where the Weather Meets the Road: A Research Agenda for Improving Road Weather Services. National Academies Press, 188 pp., https://doi.org/10.17226/10893.
National Research Council, 2012: Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs. National Academies Press, 190 pp., https://doi.org/10.17226/13328.
Nelson, M., and M. Brown, 2013: The QUIC Start Guide (v 6.01). Los Alamos National Laboratory Doc. LA-UR-13-27291, 261 pp., https://www.lanl.gov/projects/quic/open_files/QUICv6.01_StartGuide.pdf.
NERC, 2014: Polar vortex review. North American Electric Reliability Corporation Doc., 49 pp., http://www.nerc.com/pa/rrm/January%202014%20Polar%20Vortex%20Review/Polar_Vortex_Review_29_Sept_2014_Final.pdf.
Nguyen, D., and J. Kleissl, 2014: Stereographic methods for cloud base height determination using two sky imagers. Sol. Energy, 107, 495–509, https://doi.org/10.1016/j.solener.2014.05.005.
Nodop, K., R. Connolly, and F. Girardia, 1998: The field campaign of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ., 32, 4095–4108, https://doi.org/10.1016/S1352-2310(98)00190-3.
Nolan, P., P. Lynch, and C. Sweeney, 2014: Simulating the future wind energy resource of Ireland using the COSMO-CLM model. Wind Energy, 17, 19–37, https://doi.org/10.1002/we.1554.
Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2002: Weather information for surface transportation: National needs assessment report. OFCM Rep. FCM-R18-2002, 302 pp., https://www.ofcm.gov/publications/WIST/entire_wist.pdf.
Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 30–45, https://doi.org/10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.
Oke, T. R., 1987: Boundary Layer Climates. 2nd ed., Methuen, 435 pp.
Olgyay, V., J. Reynolds, K. Yeang, A. Olgyay, and D. Lyndon, 2015: Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, 224 pp.
Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 2597–2600, https://doi.org/10.1029/2001GL012990.
Orwig, K. D., and Coauthors, 2014: Recent trends in variable generation forecasting and its value to the power system. IEEE Trans. Renewable Energy, 6, 924–933, https://doi.org/10.1109/TSTE.2014.2366118.
Osborne, L. F., Jr., 2006: A blowing and drifting snow algorithm supporting winter road maintenance decision making. 22nd Conf. on Interactive Information Processing Systems, Atlanta, GA, Amer. Meteor. Soc., 13.8, https://ams.confex.com/ams/pdfpapers/105089.pdf.
Osborne, L. F., Jr., 2012: Development and demonstration of a freezing drizzle algorithm for roadway environmental sensing systems—http://aurora-program.org. Aurora Project Final Rep. 2007-04, 13 pp., http://publications.iowa.gov/14510/.
Owens, M. S., 2000: The Advanced Transportation Weather Information System (ATWIS). Mid-Continent Transp. Symp. Proc., Ames, IA, Center for Transportation Research and Education, 9–13, https://rosap.ntl.bts.gov/view/dot/14180.
Park, D. C., M. A. El-Sharkawi, R. J. Jarks II, L. E. Atlas, and M. J. Damborg, 1991: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst., 6, 442–448, https://doi.org/10.1109/59.76685.
Parks, K., Y.-H. Wan, G. Wiener, and Y. Liu, 2011: Wind energy forecasting: A collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy. National Renewable Energy Laboratory Rep. NREL/SR-5500-52233, 35 pp., https://www.nrel.gov/docs/fy12osti/52233.pdf.
Pasquill, F., 1956: Meteorological research at Porton. Nature, 177, 1148–1158, https://doi.org/10.1038/1771148a0.
Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag., 90, 33–49.
Pasquill, F., 1974: Atmospheric Diffusion. 2nd ed., John Wiley and Sons, 429 pp.
Pelland, S., J. Remund, J. Kleissl, T. Oozeki, and K. De Brabandere, 2013: Photovoltaic and solar forecasting: State of the art. International Energy Agency Rep. IEA PVPS T14-01:2013, 36 pp. http://iea-pvps.org/index.php?id=278.
Peng, Z., D. Yu, D. Huang, J. Heiser, S. Yoo, and P. Kalb, 2015: 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy, 118, 496–519, https://doi.org/10.1016/j.solener.2015.05.037.
Perez, R., and Coauthors, 2013: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada, and Europe. Sol. Energy, 94, 305–326, https://doi.org/10.1016/j.solener.2013.05.005.
Perry, S., A. Cimorelli, J. Weil, A. Venkatram, R. Paine, R. Wilson, R. Lee, and W. Peters, 2005: AERMOD: A dispersion model for industrial source applications Part II: Model performance against seventeen field-study databases. J. Appl. Meteor., 44, 694–708, https://doi.org/10.1175/JAM2228.1.
Peters-Lidard, C. D., F. Houssain, L. R. Leung, N. McDowell, M. Rodell, F. Tapiador, F. J. Turk, and A. Wood, 2019: 100 years of progress in hydrology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1.
Petty, K. R., and W. P. Mahoney, 2008: The U.S. Federal Highway Administration winter road Maintenance Decision Support System (MDSS): Recent enhancements and refinements. Proc. of SIRWEC 14th Int. Road Weather Conf., Prague, Czech Republic, Standing International Road Weather Commission, http://sirwec.org/wp-content/uploads/Papers/2008-Prague/D-29.pdf.
Popp, D., 2003: Pollution control innovations and the Clean Air Act of 1990. J. Policy Anal. Manage., 22, 641–660, https://doi.org/10.1002/pam.10159.
Pryor, S. C., and R. J. Barthelmie, 2011: Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA, 108, 8167–8171, https://doi.org/10.1073/pnas.1019388108.
Pryor, S. C., R. J. Barthemie, and E. Kjellstrom, 2005: Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model. Climate Dyn., 25, 815–835, https://doi.org/10.1007/s00382-005-0072-x.
Pryor, S. C., R. J. Barthelmie, N. E. Clausen, M. Drews, N. MacKellar, and E. Kjellstrom, 2012a: Analysis of possible changes in intense and extreme winds speeds over northern Europe under climate change scenarios. Climate Dyn., 38, 189–208, https://doi.org/10.1007/s00382-010-0955-3.
Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2012b: Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res., 117, D19119, https://doi.org/10.1029/2012JD017449.
Pryor, S. C., G. Nikulin, and C. Jones, 2012c: Influence of spatial resolution on regional climate model derived wind climates. J. Geophys. Res., 117, D03117, https://doi.org/10.1029/2011JD016822.
Quesada-Ruiz, S., Y. Chu, J. Tovar-Pescador, H. T. C. Pedro, and C. F. M. Coimbra, 2014: Cloud-tracking methodology for intra-hour DNI forecasting. Sol. Energy, 102, 267–275, https://doi.org/10.1016/j.solener.2014.01.030.
Randerson, D., 1972: Temporal changes in the horizontal diffusion parameters of a single nuclear debris cloud. J. Appl. Meteor., 11, 670–673, https://doi.org/10.1175/1520-0450(1972)011<0670:TCIHDP>2.0.CO;2.
Rao, S. T., S. Galmarini, and K. Puckett, 2011: Air quality model evaluation international initiative (AQMEII): Advancing the state of the science in regional photochemical modeling and its applications. Bull. Amer. Meteor. Soc., 92, 23–30, https://doi.org/10.1175/2010BAMS3069.1.
Reikard, G., S. E. Haupt, and T. Jensen, 2017: Forecasting ground-level irradiance over short horizons: Meteorological and time series models. Renew. Energy, 112, 474–485, https://doi.org/10.1016/j.renene.2017.05.019.
REN21, 2018: Renewables 2017: Global status report. Accessed 16 October 2018, http://www.ren21.net/gsr-2017/.
Reynolds, S., S. Burian, J. Shepherd, and M. Manyin, 2008: Urban induced rainfall modifications on urban hydrologic response. Reliable Modeling of Urban Water Systems, W. James et al. Eds., Computational Hydraulics International, 99–122.
Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbor graph. Proc. Roy. Soc. London, 110A, 709–737, https://doi.org/10.1098/rspa.1926.0043.
Ritchie, H., and M. Roser, 2018: Energy production & changing energy sources. OurWorldInData.org, accessed 3 October 2018, https://ourworldindata.org/energy-production-and-changing-energy-sources.
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606.
Rossetti, M. A., 2007: Analysis of weather events on U.S. railroads. 23rd Conf. on Interactive Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 4A.2, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_118791.htm.
SEforALL, 2014: Sustainable Energy for All: 2014 annual report. United Nations, 64 pp., https://www.seforall.org/sites/default/files/SE4ALL_2014_annual_report_final_0.pdf.
Sailor, D., M. Shepherd, S. Sheridan, B. Stone, L. Kalkstein, A. Russell, J. Vargo, and T. Andersen, 2016: Improving heat-related health outcomes in an urban environment with science-based policy. Sustainability, 8, 1015, https://doi.org/10.3390/su8101015.
Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 5949–5965, https://doi.org/10.1002/2013JD021225.
Sauer, V. B., W. Thomas Jr., V. Stricker, and K. Wilson, 1983: Flood characteristics of urban watersheds in the United States. USGS Water-Supply Paper 2207, 63 pp., https://pubs.usgs.gov/wsp/2207/report.pdf.
Scire, J. S., D. G. Strimaitis, and R. J. Yamartino, 2000: A user’s guide for the CALPUFF Dispersion Model (v 5). Earth Tech, 521 pp., http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf.
Seaman, N. L., 2000: Meteorological modeling for air quality assessments. Atmos. Environ., 34, 2231–2259, https://doi.org/10.1016/S1352-2310(99)00466-5.
SEIA, 2017: Solar Industry Research Data. Solar Energy Industries Association, accessed 10 July 2017, http://www.seia.org/research-resources/solar-industry-data.
Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley and Sons, 1152 pp.
Seto, K. C., and J. M. Shepherd, 2009: Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustainability, 1, 89–95, https://doi.org/10.1016/j.cosust.2009.07.012.
Sharma, N., P. Sharma, D. Irwin, and P. Shenoy, 2011: Predicting solar generation from weather forecasts using machine learning. 2011 IEEE Int. Conf. on Smart Grid Communications, Brussels, Belgium, IEEE, 528–533, https://doi.org/10.1109/SmartGridComm.2011.6102379.
Shepherd, J. M., 2013: Impacts of urbanization on precipitation and storms: Physical Insights and vulnerabilities. Vulnerability of Water Resources to Climate Change, Vol. 5, Climate Vulnerability, Elsevier, 109–125, https://doi.org/10.1016/B978-0-12-384703-4.00503-7.
Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689–701, https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.
Shepherd, J. M., T. Anderson, L. Bounoua, A. Horst, C. Mitra, and C. Strother, 2013: Urban Climate Archipelagos: A new framework for urban-climate interactions. IEEE Earthzine, IEEE Oceanic Engineering Society, https://earthzine.org/urban-climate-archipelagos-a-new-framework-for-urban-impacts-on-climate/.
Souch, C., and S. Grimmond, 2006: Applied climatology: Urban climate. Prog. Phys. Geogr., 30, 270–279, https://doi.org/10.1191/0309133306pp484pr.
Stallins, J. A., and L. S. Rose, 2008: Urban lightning: Current research, methods, and the geographical perspective. Geogr. Compass, 2, 620–639, https://doi.org/10.1111/j.1749-8198.2008.00110.x.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.
Stern, A. D., V. P. Shah, K. J. Biesecker, C. Yeung, P. Pisano, and J. Pol, 2007: Vehicles as mobile sensing platforms for meteorological observations: A first look. 23rd Conf. on Interactive Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 4A.6, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_118986.htm.
Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1.
Stone, B., Jr., 2012: The City and the Coming Climate: Climate Change in the Places We Live. Cambridge University Press, 187 pp., https://doi.org/10.1017/CBO9781139061353.
Stone, B., Jr., J. J. Hess, and H. Frumkin, 2010: Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect., 118, 1425–1428, https://doi.org/10.1289/ehp.0901879.
Stone, B., Jr., J. Vargo, and D. Habeeb, 2012: Managing climate change in cities: Will climate action plans work? Landscape Urban Plann., 107, 263–271, https://doi.org/10.1016/j.landurbplan.2012.05.014.
Strimaitis, D. G., R. J. Paine, B. A. Egan, and R. J. Yamartino, 1987: EPA complex terrain model development: Final report. Environmental Protection Agency Tech. Rep., 484 pp https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JVE1.txt.
Stull, R. B., 2000: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole/Thomson, 502 pp.
Svirejeva-Hopkins, A., H. J. Schellnhuber, and V. L. Pomaz, 2004: Urbanized territories as a specific component of the global carbon cycle. Ecol. Modell., 173, 295–312, https://doi.org/10.1016/j.ecolmodel.2003.09.022.
Sykes, R. I., S. Parker, D. Henn, and B. Chowdhury, 2007: SCIPUFF version 2.3 technical documentation. L-3 Technologies, Inc., Rep., 336 pp.
Sznaider, R. J., and J. H. Block, 2003: Weather-enabled decision support systems used in business applications. 19th Conf. on Interactive Information Processing Systems, Long Beach, CA, Amer. Meteor. Soc., 3.8, https://ams.confex.com/ams/pdfpapers/54993.pdf.
Takle, E. S., and T. Greenfield, 2005: Test and validation of a model for forecasting frost on bridges. Minnesota Dept. of Transportation Final Rep. MN/RC 2005-29, 15 pp., https://www.lrrb.org/media/reports/200529.pdf.
Taylor, G. I., 1921: Diffusion by continuous moments. Proc. London Math. Soc., 20, 196–200, https://doi.org/10.1112/plms/s2-20.1.196.
Tighe, S. L., B. Mills, C. T. Haas, and S. Baiz, 2007: Using Road Weather Information Systems (RWIS) to control load restrictions on gravel and surface-treated highways. Ministry of Transportation of Ontario (MTO) Engineering Standards Branch Rep., 127 pp., https://intrans.iastate.edu/app/uploads/2019/05/spring-load-restrictions.pdf.
Tinarelli, G., G. Brusasca, O. Oldrini, D. Anfossi, S. T. Castelli, and J. Moussafir, 2007: Micro-Swift-Spray (MSS): A new modelling system for the simulation of dispersion at microscale. General description and validation. Air Pollution Modeling and Its Application XVII, C. Borrego and A. L. Norma, Eds., Springer, 449–454, https://doi.org/10.1007/978-0-387-68854-1_49.
Trenberth, K., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.
Troccoli, A., Ed., 2018: Weather and Climate Services for the Energy Industry. Palgrave MacMillan, 197 pp., https://doi.org/10.1007/978-3-319-68418-5.
Troccoli, A., and Coauthors, 2013: Promoting new links between energy and meteorology. Bull. Amer. Meteor. Soc., 94, ES36–ES40, https://doi.org/10.1175/BAMS-D-12-00061.1.
Troccoli, A., L. Dubus, and S. E. Haupt, Eds., 2014: Weather Matters for Energy. Springer, 528 pp., https://doi.org/10.1007/978-1-4614-9221-4.
Troccoli, A., M. Bruno Soares, L. Dubus, S. E. Haupt, M. Dadeck Boulahya, and S. Dorling, 2018: Forging a dialogue between the energy industry and the meteorological community. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 65–83, https://doi.org/10.1007/978-3-319-68418-5_5.
Tuohy, A., and Coauthors, 2015: Solar forecasting: Method, challenges, and performance. IEEE Power Energy Mag., 13, 50–59, https://doi.org/10.1109/MPE.2015.2461351.
Turner, D. B., 1967: Workbook of atmospheric dispersion estimates. Public Health Service Pub. 999-AP-26, 86 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JEIO.txt.
United Nations, 2014: World urbanization prospects, the 2014 revision: Highlights. U.N. Dept. of Economic and Social Affairs Rep. ST/ESA/SER.A/352, 27 pp., https://population.un.org/wup/Publications/Files/WUP2014-Highlights.pdf.
United Nations, 2018: World Population Prospects 2017. Accessed 30 September 2018, https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.
U.S. Coast Guard, 2017: 2016 Recreational boating statistics. USCG Rep. COMDTPUB P16754.30, 83 pp., https://www.uscgboating.org/library/accident-statistics/Recreational-Boating-Statistics-2016.pdf.
USDOT FHWA Road Weather Management Program, 2017a: How do weather events impact roads? Accessed 4 February 2018, https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm.
USDOT FHWA Road Weather Management Program, 2017b: 511 travel information telephone services. Accessed 11 February 2018, https://ops.fhwa.dot.gov/511/index.htm.
USDOT FHWA Road Weather Management Program, 2017c: Surveillance, monitoring and prediction. Accessed 11 February 2018, https://ops.fhwa.dot.gov/weather/mitigating_impacts/surveillance.htm.
USDOT FHWA Road Weather Management Program, 2017d: Surveillance, projects and programs. Accessed 12 February 2018, https://ops.fhwa.dot.gov/weather/mitigating_impacts/programs.htm#p1.
van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ., 12, 2125–2129, https://doi.org/10.1016/0004-6981(78)90167-1.
Voelcker, J., 2014: 1.2 billion vehicles on world's roads now, 2 billion by 2035: Report. Green Car Reports, accessed 15 October 2018 https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report.
Voogt, J. A., 2017: Urban climatology. International Encyclopedia of Geography: People, the Earth, Environment and Technology, John Wiley and Sons, 7305–7318.
Voogt, J. A., and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370–384, https://doi.org/10.1016/S0034-4257(03)00079-8.
Wan, H., Z. Zhong, X. Yang, and X. Li, 2015: Ensembles to model the impact of urbanization for a summertime rainstorm process in Yangtze River Delta, China. Meteor. Appl., 22, 105–112, https://doi.org/10.1002/met.1360.
Wang, X., and Y. Gong, 2010: The impact of an urban dry island on the summer heat wave and sultry weather in Beijing City. Chin. Sci. Bull., 55, 1657–1661, https://doi.org/10.1007/s11434-010-3088-5.
Wang, Y., D. Niu, and L. Ji, 2012: Short-term power load forecasting based on IVL-BP neural network technology. Syst. Eng. Proc., 4, 168–174, https://doi.org/10.1016/j.sepro.2011.11.062.
Weissman, G., R. Sargent, and B. Fanshaw, 2018: Renewables on the rise 2018: A decade of progress toward a clean energy future. Environment America Rep., 42 pp., https://environmentamerica.org/sites/environment/files/reports/AME_Renewables-on-the-Rise_Jul18-Web.pdf.
Wilczak, J., and Coauthors, 2015: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 1699–1718, https://doi.org/10.1175/BAMS-D-14-00107.1.
Williams, M., M. Brown, B. Singh, and D. Boswell, 2004: QUIC-PLUME theory guide. Los Alamos National Laboratory Doc. LA-UR-04-0561, 21 pp., https://www.lanl.gov/projects/quic/open_files/QUICPLUME_theory.pdf.
WMO, 2015: Valuing weather and climate: Economic assessment of meteorological and hydrological services. WMO, World Bank Group, GFDRR, and USAID Rep. WMO-1153, 286 pp., https://library.wmo.int/doc_num.php?explnum_id=3314.
Worldometers, 2018: Current world population. Accessed 30 September 2018, http://www.worldometers.info/world-population/.
Xcel Energy, 2018: Wind operations. Accessed 4 February 2018, https://www.xcelenergy.com/energy_portfolio/renewable_energy/wind/wind_operations.
Yang, D., P. Jirutitijaroen, and W. M. Walsh, 2012: Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy, 86, 3531–3543, https://doi.org/10.1016/j.solener.2012.07.029.
Yang, L., J. A. Smith, D. B. Wright, M. L. Baeck, G. Villarini, F. Tian, and H. Hu, 2013: Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeor., 14, 1791–1809, https://doi.org/10.1175/JHM-D-12-095.1.
Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 1227–1251, https://doi.org/10.1111/j.1749-8198.2007.00063.x.
Zagouras, A., A. Kazantzidis, E. Nikitidou, and A. A. Argiriou, 2013: Determination of measuring sites for solar irradiance, based on cluster analysis of satellite-derived cloud estimations. Sol. Energy, 97, 1–11, https://doi.org/10.1016/j.solener.2013.08.005.