Ackerman, S. A., and S. K. Cox, 1981: GATE Phase III mean synoptic-scale radiative convergence profiles. Mon. Wea. Rev., 109, 371–383, https://doi.org/10.1175/1520-0493(1981)109<0371:GPIMSS>2.0.CO;2.
Ackerman, S. A., and S. K. Cox, 1987: Radiative energy budget estimates for the 1979 southwest summer monsoon. J. Atmos. Sci., 44, 3052–3078, https://doi.org/10.1175/1520-0469(1987)044<3052:REBEFT>2.0.CO;2.
Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear-sky from clouds with MODIS. J. Geophys. Res., 103, 32 141–32 157, https://doi.org/10.1029/1998JD200032.
Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1.
Ackerman, S. A., A. Heidinger, M. J. Foster, and B. Maddux, 2013: Satellite regional cloud climatology over the Great Lakes. Remote Sens., 5, 6223–6240, https://doi.org/10.3390/rs5126223.
Adirosi, E., E. Volpi, F. Lombardo, and L. Baldini, 2016: Raindrop size distribution: Fitting performance of common theoretical models. Adv. Water Resour., 96, 290–305, https://doi.org/10.1016/j.advwatres.2016.07.010.
Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convection and stratiform rainfall. J. Appl. Meteor., 27, 30–51, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.
Adler, R. F., M. J. Markus, D. D. Fenn, G. Szejwach, and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Appl. Meteor., 22, 579–593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.
Adler, R. F., J.-J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281–293, https://doi.org/10.2151/jmsj.87A.281.
Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 2051–2068, https://doi.org/10.1175/BAMS-D-14-00193.1.
Alishouse, J., S. Snyder, J. Vongsathorn, and R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816, https://doi.org/10.1109/36.58967.
Al-Saadi, J., and Coauthors, 2005: Improving national air quality forecasts with satellite aerosol observations. Bull. Amer. Meteor. Soc., 86, 1249–1261, https://doi.org/10.1175/BAMS-86-9-1249.
Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011.
Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 1229–1238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.
Arking, A., 1964: Latitudinal distribution of cloud cover from TIROS III photographs. Science, 143, 569–571, https://doi.org/10.1126/science.143.3606.569.
Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24, 322–333, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2.
Arndt, D. S., M. O. Baringer, and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1–S224, https://doi.org/10.1175/BAMS-91-7-StateoftheClimate.
Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system. IEEE Trans. Geosci. Remote Sens., 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356.
Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.
Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office Unified Model Global Atmosphere 5.0 configuration. J. Climate, 27, 7725–7752, https://doi.org/10.1175/JCLI-D-13-00700.1.
Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 1170–1185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.
Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379–390, https://doi.org/10.1029/RG024i002p00379.
Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.
Battaglia, A., K. Mroz, T. Lang, F. Tridon, S. Tanelli, L. Tian, and G. M. Heymsfield, 2016a: Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. J. Geophys. Res. Atmos., 121, 9356–9381, https://doi.org/10.1002/2016JD025269.
Battaglia, A., K. Mroz, S. Tanelli, F. Tridon, and P.-E. Kirstetter, 2016b: Multiple-scattering-induced “ghost echoes” in GPM DPR observations of a tornadic supercell. J. Appl. Meteor. Climatol., 55, 1653–1666, https://doi.org/10.1175/JAMC-D-15-0136.1.
Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, and S. A. Ackerman, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, https://doi.org/10.1175/JAMC-D-11-0203.1.
Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 1983–2005, https://doi.org/10.1175/JAMC-D-15-0249.1.
Bedka, K., E. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 1159–1181, https://doi.org/10.1175/WAF-D-18-0040.1.
Beer, R., T. A. Glavich, and D. M. Rider, 2001: Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt., 40, 2356–2367, https://doi.org/10.1364/AO.40.002356.
Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1.
Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.
Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger, 2011: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys. Res. Lett., 38, L09704, https://doi.org/10.1029/2011GL047235.
Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 2639–2654, https://doi.org/10.1175/JTECH-D-16-0100.1.
Berndt, E. B., and M. Folmer, 2018: Utility of CrIS/ATMS profiles to diagnose extratropical transition. Results Phys., 8, 184–185, https://doi.org/10.1016/j.rinp.2017.12.006.
Berndt, E. B., B. T. Zavodsky, and M. J. Folmer, 2016: Development and application of atmospheric infrared sounder ozone retrieval products for operational meteorology. IEEE Trans. Geosci. Remote Sens., 54, 958–967, https://doi.org/10.1109/TGRS.2015.2471259.
Berndt, E. B., A. Molthan, W. W. Vaughan, and K. Fuell, 2017: Transforming satellite data into weather forecasts. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO064449.
Bhartia, P. K., D. F. Heath, and A. F. Fleig, 1985: Observation of anomalously small ozone densities in south polar stratosphere during October 1983 and 1984. Symp. on Dynamics and Remote Sensing of the Middle Atmosphere, Prague, Czechoslovakia, International Association of Geomagnetism and Aeronomy.
Blake, E. S., and R. J. Pasch, 2010: Eastern North Pacific hurricane season of 2008. Mon. Wea. Rev., 138, 705–721, https://doi.org/10.1175/2009MWR3093.1.
Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1.
Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 4213–4228, https://doi.org/10.1175/JCLI-D-15-0564.1.
Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D212204, https://doi.org/10.1029/2005JD005763.
Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 2007–2037, https://doi.org/10.1175/2009MWR3135.1.
Bréon, F.-M., and S. Colzy, 2000: Global distribution of cloud droplet effective radius from POLDER polarization measurements. Geophys. Res. Lett., 27, 4065–4068, https://doi.org/10.1029/2000GL011691.
Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Climate, 29, 5821–5835, https://doi.org/10.1175/JCLI-D-15-0897.1.
Buriez, J.-C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 2785–2813, https://doi.org/10.1080/014311697217332.
Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.
Callis, L. B., and M. Natarajan, 1986: The Antarctic ozone minimum: Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle. J. Geophys. Res., 91, 10 771–10 796, https://doi.org/10.1029/JD091iD10p10771.
Cayla, F., and J. Pascale, 1995: IASI: Instrument overview. Proc. SPIE, 2553, 316–328, https://doi.org/10.1117/12.221368.
Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404–414, https://doi.org/10.1016/j.atmosres.2012.06.028.
Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 8305–8314, https://doi.org/10.1029/JD093iD07p08305.
Chahine, M. T., 1968: Determination of the temperature profile in an atmosphere from its outgoing radiance. J. Opt. Soc. Amer., 58, 1634–1637, https://doi.org/10.1364/JOSA.58.001634.
Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I: The single cloud layer. J. Atmos. Sci., 31, 233–243, https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.
Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911–926, https://doi.org/10.1175/BAMS-87-7-911.
Chakraborty, S., R. Fu, J. S. Wright, and S. T. Massie, 2015: Relationships between convective structure and transport of aerosols to the upper troposphere deduced from satellite observations. J. Geophys. Res. Atmos., 120, 6515–6536, https://doi.org/10.1002/2015JD023528.
Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2, 181–184, https://doi.org/10.1038/ngeo437.
Chand, D., and Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894.
Chen, G., W. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103, https://doi.org/10.1029/2008JD011103.
Chen, P. Y., R. Srinivasan, G. Fedosejevs, and B. Narasimhan, 2002: An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. Int. J. Remote Sens., 23, 2939–2950, https://doi.org/10.1080/01431160110075631.
Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208, https://doi.org/10.1175/MWR3245.1.
Chen, Y., H. Wang, J. Min, X.-Y. Huang, P. Minnis, R. Zhang, J. Haggerty, and R. Palikonda, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol, 54, 1809–1825, https://doi.org/10.1175/JAMC-D-14-0243.1.
Chen, Y., R. Zhang, D. Meng, J. Min, and L. Zhang, 2016: Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci., 33, 1158–1170, https://doi.org/10.1007/s00376-016-6004-3.
Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 4132–4154, https://doi.org/10.1002/2015JD023161.
Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 329–13 337, https://doi.org/10.1029/JD094iD11p13329.
Chu, D. A., Y. J. Kaufman, G. Zibordi, J. D. Chern, J. Mao, C. Li, and B. N. Holben, 2003: Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 108, 4661, https://doi.org/10.1029/2002JD003179.
Clarke, A. C., 1945: Extra-terrestrial relays: Can rocket stations give worldwide radio coverage? Wireless World, 51 (10), 305–308.
Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 2546–2556, https://doi.org/10.1175/JCLI-D-12-00062.1.
Coakley, J. A., Jr., and F. P. Bretherton, 1986: Cloud cover from high resolution scanner data: Detecting and allowing for partial field fields of view. J. Atmos. Sci., 43, 1025–1035, https://doi.org/10.1175/1520-0469(1986)043<1025:TEOCSO>2.0.CO;2.
Colle, B. A., A. R. Naeger, and A. Molthan, 2017: Structure and evolution of a warm frontal precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 473–493, https://doi.org/10.1175/MWR-D-16-0072.1.
Cox, S. K., and K. T. Griffith, 1979: Estimates of radiative divergence during Phase III of the GARP Atlantic Tropical Experiment: Part I. Methodology. J. Atmos. Sci., 36, 576–585, https://doi.org/10.1175/1520-0469(1979)036<0576:EORDDP>2.0.CO;2.
Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE–The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114–118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.
Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749–767, https://doi.org/10.1175/2009WAF2222302.1.
Dave, J. V., and C. L. Mateer, 1967: A preliminary study of the possibility of estimating the atmospheric ozone from satellite measurements. J. Atmos. Sci., 24, 414–427, https://doi.org/10.1175/1520-0469(1967)024<0414:APSOTP>2.0.CO;2.
Davies, R., V. M. Jovanovic, and C. M. Moroney, 2017: Cloud heights measured by MISR from 2000 to 2015. J. Geophys. Res. Atmos., 122, 3975–3986, https://doi.org/10.1002/2017JD026456.
Davis, G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, https://doi.org/10.1117/1.2642347.
De Mazière, M., and Coauthors, 2018: The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018.
Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282–296, https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.
Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: TC4 validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, https://doi.org/10.1029/2009JD013104.
Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2302, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.
Derrien, M., B. Farki, L. Harang, H. LeGleau, A. Noyalet, D. Pochic, and A. Sairouni, 1993: Automatic cloud detection applied to NOAA-11 AVHRR imagery. Remote Sens. Environ., 46, 246–267, https://doi.org/10.1016/0034-4257(93)90046-Z.
Desbois, M., G. Séze, and G. Szejwach, 1982: Automatic classification of clouds on METEOSAT imagery: Application to high clouds. J. Appl. Meteor., 21, 401–412, https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2.
Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Séze, 1994: The POLDER Mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598–615, https://doi.org/10.1109/36.297978.
Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 1523–1527, https://doi.org/10.1126/science.1192546.
Dessler, A. E., and Coauthors, 1998: Selected science highlights from the first 5 years of the Upper Atmosphere Research Satellite (UARS) Program. Rev. Geophys., 36, 183–210, https://doi.org/10.1029/97RG03549.
Dieng, H. B., A. Cazenave, K. V. Schuckmann, M. Ablain, and B. Meyssignac, 2015: Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015.
Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1.
Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, and P. E. Mlynczak, 2016: Advances in geostationary-derived longwave fluxes for the CERES Synoptic (SYN1deg) product. J. Atmos. Oceanic Technol., 33, 503–521, https://doi.org/10.1175/JTECH-D-15-0147.1.
Dole, R. M., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response field campaign. Bull. Amer. Meteor. Soc., 97, 975–1001, https://doi.org/10.1175/BAMS-D-16-0219.1.
Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438.
Dong, X., B. Xi, S. Qiu, P. Minnis, S. Sun-Mack, and F. Rose, 2016: A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. J. Geophys. Res. Atmos., 121, 10 175–10 198, https://doi.org/10.1002/2016JD025255.
Dowling, D. R., and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29, 970–978, https://doi.org/10.1175/1520-0450(1990)029<0970:ASOTPP>2.0.CO;2.
Drummond, J. R., and G. S. Mand, 1996: The Measurements of Pollution in the Troposphere (MOPITT) instrument: Overall performance and calibration requirements. J. Atmos. Oceanic Technol., 13, 314–320, https://doi.org/10.1175/1520-0426(1996)013<0314:TMOPIT>2.0.CO;2.
Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.
Edwards, D. P., and Coauthors, 2004: Observations of carbon monoxide and aerosol from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res., 109, D24202, https://doi.org/10.1029/2004JD004727.
Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 3137–3145, https://doi.org/10.5194/acp-9-3137-2009.
Ellrod, G. P., 1985: Detection of high level turbulence using satellite imagery and upper air data. NOAA Tech. Memo. NESDIS 10, 30 pp.
Elsaesser, G. S., C. W. O’Dell, M. D. Lebsock, R. Bennartz, T. J. Greenwald, and F. J. Wentz, 2017: The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). J. Climate, 30, 10 193–10 210, https://doi.org/10.1175/JCLI-D-16-0902.1.
Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff, 2004: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 38, 2495–2509, https://doi.org/10.1016/j.atmosenv.2004.01.039.
Ernst, J. A., 1976: SMS-1 nighttime infrared imagery of low-level mountain waves. Mon. Wea. Rev., 104, 207–209, https://doi.org/10.1175/1520-0493(1976)104<0207:SNIIOL>2.0.CO;2.
Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic ocean temperature anomalies. Science, 324, 778–781, https://doi.org/10.1126/science.1167404.
Evans, K. F., A. H. Evans, I. G. Nolt, and B. T. Marshall, 1999: The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer. J. Appl. Meteor., 38, 514–525, https://doi.org/10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2.
Eyre, J. R., and A. Lorenc, 1989: Direct use of satellite sounding radiances in numerical weather prediction. Meteor. Mag., 118, 3–16.
Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210, https://doi.org/10.1038/315207a0.
Fauchez, T., P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer, 2015: Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry. Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015.
Feltz, M., R. Knuteson, S. A. Ackerman, and H. Revercomb, 2014: Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders. Atmos. Meas. Tech., 7, 3751–3762, https://doi.org/10.5194/amt-7-3751-2014.
Ferlay, N., and Coauthors, 2010: Toward new inferences about cloud structures from multidirectional measurements in the oxygen A band: Middle-of-cloud pressure and cloud geometrical thickness from POLDER-3/PARASOL. J. Appl. Meteor. Climatol., 49, 2492–2507, https://doi.org/10.1175/2010JAMC2550.1.
Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 1036–1049, https://doi.org/10.1109/TGRS.2004.843249.
Fett, R. W., and R. G. Isaacs, 1979: Concerning causes of “anomalous gray shades” in DMSP visible imagery. J. Appl. Meteor., 18, 1340–1351, https://doi.org/10.1175/1520-0450(1979)018<1340:CCOGSI>2.0.CO;2.
Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 9512–9520, https://doi.org/10.1002/2015GL065497.
Field, R. D., and Coauthors, 2015: Development of a global fire weather database. Nat. Hazards Earth Syst. Sci., 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015.
Fischer, J., R. Preusker, and L. Schüller, 1997: ATBD cloud top pressure. European Space Agency Algorithm Theoretical Basis Doc. PO-TN-MEL-GS-0006, 28 pp.
Fishman, J., and W. Seiler, 1983: Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res., 88, 3662–3670, https://doi.org/10.1029/JC088iC06p03662.
Foster, M. J., and A. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414–425, https://doi.org/10.1175/JCLI-D-11-00666.1.
Foster, M. J., and Coauthors, 2017:Cloudiness [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S27–S28, https://doi.org/10.1175/2017BAMSStateoftheClimate.1.
Frey, R. A., S. A. Ackerman, and B. J. Soden, 1996: Climate parameters from satellite spectral measurements. Part I: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate, 9, 327–344, https://doi.org/10.1175/1520-0442(1996)009<0327:CPFSSM>2.0.CO;2.
Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 1057–1072, https://doi.org/10.1175/2008JTECHA1052.1.
Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940–944, https://doi.org/10.1038/ngeo1987.
Fritz, S., 1965: The significance of mountain lee waves as seen from satellite pictures. J. Appl. Meteor., 4, 31–37, https://doi.org/10.1175/1520-0450(1965)004<0031:TSOMLW>2.0.CO;2.
Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
Fu, Q., G. Lesins, J. Higgins, T. Charlock, P. Chylek, and J. Michalsky, 1998: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25, 1169–1172, https://doi.org/10.1029/98GL00846.
Gambacorta, A., and C. D. Barnet, 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens., 51, 3207–3216, https://doi.org/10.1109/TGRS.2012.2220369.
Gambacorta, A., and C. D. Barnet, 2018: Atmospheric soundings from hyperspectral satellite observations. Comprehensive Remote Sensing, Vol. 7, Elsevier, 64–96, https://doi.org/10.1016/B978-0-12-409548-9.10384-7.
Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 3189–3206, https://doi.org/10.1002/qj.3172.
Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 4009–4025, https://doi.org/10.1175/2010MWR3393.1.
Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. J. Climate, 28, 1288–1307, https://doi.org/10.1175/JCLI-D-14-00103.1.
Glumb, R. J., D. C. Jordan, and P. Mantica, 2002: Development of the Crosstrack Infrared Sounder (CrIS) sensor design. Proc. SPIE, 4486, 411–424, https://doi.org/10.1117/12.455124.
Goldberg, M. D., Y. Qu, L. M. McMillin, W. W. Wolf, L. Zhou, and M. Divakarla, 2003: AIRS near-real-time products and algorithms in support of operational weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379–389, https://doi.org/10.1109/TGRS.2002.808307.
Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Seze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geol. Res., 105, 14 747–14 759, https://doi.org/10.1029/1999JD901183.
Gong, J., and D. L. Wu, 2017: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys., 17, 2741–2757, https://doi.org/10.5194/acp-17-2741-2017.
Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 34–49, https://doi.org/10.1016/j.atmosres.2013.01.006.
Goodman, S. J., T. J. Schmit, J. Daniels, W. Denig, and K. Metcalf, 2018: GOES: Past, present and future. Comprehensive Remote Sensing, Vol. 1, Elsevier, 119–149, https://doi.org/10.1016/B978-0-12-409548-9.10315-X.
Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 69–84, https://doi.org/10.1175/BAMS-D-14-00054.1.
Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, https://doi.org/10.1029/2009GL040394.
Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18 471–18 488, https://doi.org/10.1029/93JD00339.
Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sidkar, 1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev., 106, 1153–1171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.
Grund, C. J., and E. Eloranta, 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.
Guo, H., J.-C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 2087–2108, https://doi.org/10.1175/JCLI-D-13-00347.1.
Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 052–12 068, https://doi.org/10.1002/2014JD022143.
Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653–667, https://doi.org/10.1175/JTECH-D-15-0097.1.
Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465–497, https://doi.org/10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.
Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm season spatial rainfall variability in Oklahoma City: Possible linkage to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48, 251–269, https://doi.org/10.1175/2008JAMC2036.1.
Hanel, R., and B. Conrath, 1969: Interferometer experiment on Nimbus 3: Preliminary results. Science, 165, 1258–1260, https://doi.org/10.1126/science.165.3899.1258.
Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945–960, https://doi.org/10.1175/BAMS-86-7-945.
Harrison, E. F., D. R. Brooks, P. Minnis, B. A. Wielicki, W. F. Staylor, G. G. Gibson, D. F. Young, and F. M. Denn, 1988: First estimates of the diurnal variation of longwave radiation from the multiple-satellite Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 69, 1144–1151, https://doi.org/10.1175/1520-0477(1988)069<1144:FEOTDV>2.0.CO;2.
Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 687–18 703, https://doi.org/10.1029/JD095iD11p18687.
Hartmann, D. L., and P. Ceppi, 2014: Trends in the CERES dataset, 2000–13: The effects of sea ice and jet shifts and comparison to climate models. J. Climate, 27, 2444–2456, https://doi.org/10.1175/JCLI-D-13-00411.1.
Hasler, A. F., 1981: Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc., 62, 194–212, https://doi.org/10.1175/1520-0477(1981)062<0194:SOFGSA>2.0.CO;2.
Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.
Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909–922, https://doi.org/10.1175/BAMS-D-12-00246.1.
Heidinger, A. K., Y. Li, B. A. Baum, R. E. Holz, S. Platnick, and P. Yang, 2015: Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 Cloud property data. Remote Sens., 7, 7257–7271, https://doi.org/10.3390/rs70607257.
Henson, R., 2010: Weather on the Air: A History of Broadcast Meteorology. Amer. Meteor. Soc., 241 pp.
Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J. Geophys. Res., 102, 16 911–16 922, https://doi.org/10.1029/96JD03680.
Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos., 119, 5317–5330, https://doi.org/10.1002/2014JD021504.
Heymsfield, G. M., and R. H. Blackmer Jr., 1988: Satellite observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 2200–2224, https://doi.org/10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2.
Heymsfield, G. M., R. H. Blackmer Jr., and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 1740–1755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.
Hill, P. G., R. P. Allan, J. C. Chiu, and T. H. M. Stein, 2016: A multisatellite climatology of clouds, radiation, and precipitation in southern West Africa and comparison to climate models. J. Geophys. Res. Atmos., 121, 10 857–10 879, https://doi.org/10.1002/2016JD025246.
Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347–370, https://doi.org/10.1175/BAMS-D-11-00027.1.
Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544–561, https://doi.org/10.1175/2007JAMC1559.1.
Holben, B. N., and Coauthors, 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 067–12 097, https://doi.org/10.1029/2001JD900014.
Holz, R., S. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high spectral resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23, 653–670, https://doi.org/10.1175/JTECH1877.1.
Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.
Holz, R. E., and Coauthors, 2016: Resolving cirrus optical depth biases between CALIOP and MODIS using IR retrievals. Atmos. Chem. Phys., 16, 5075–2016, https://doi.org/10.5194/acp-16-5075-2016.
Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110, D05205, https://doi.org/10.1029/2004JD004949.
Horváth, Á., and R. Davies, 2007: Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res., 112, D01202, https://doi.org/10.1029/2006JD007101.
Horváth, Á., and C. Gentemann, 2007: Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, non-precipitating marine clouds. Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030625.
Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurements Mission. Bull. Amer. Meteor. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1.
House, F. B., A. Gruber, G. E. Hunt, and A. T. Mecherikunnel, 1986: History of satellite missions and measurements of the Earth Radiation Budget (1957–1984). Rev. Geophys., 24, 357–377, https://doi.org/10.1029/RG024i002p00357.
Houze, R. A., Jr., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.
Hsu, N. C., J. R. Herman, J. F. Gleason, O. Torres, and C. J. Seftor, 1999: Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys. Res. Lett., 26, 1165–1168, https://doi.org/10.1029/1999GL900155.
Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012.
Hsu, N. C., M.-J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S.-C. Tsay, 2013: Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712.
Hu, Y., and Coauthos, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 2293–2309, https://doi.org/10.1175/2009JTECHA1280.1.
Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, L23212, https://doi.org/10.1029/2008JD010620.
Huang, J., J. Liu, B. Chen, and S. L. Nasiri, 2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11 653–11 665, https://doi.org/10.5194/acp-15-11653-2015.
Hubert, L. F., and L. F. Whitney Jr., 1971: Wind estimation from geostationary-satellite pictures. Mon. Wea. Rev., 99, 665–672, https://doi.org/10.1175/1520-0493(1971)099<0665:WEFGP>2.3.CO;2.
Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1.
Huffman, G. J., and Coauthors, 2017: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.6, 28 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf.
Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res., 102, 16 889–16 909, https://doi.org/10.1029/96JD04009.
Iguchi, T., and Coauthors, 2014: WRF–SBM simulations of melting-layer structure in mixed-phase: Precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 2710–2731, https://doi.org/10.1175/JAMC-D-13-0334.1.
Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1.
Iturbide-Sanchez, F., S. R. S. da Silva, Q. Liu, K. L. Pryor, M. E. Pettey, and N. R. Nalli, 2018: Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS Soundings. IEEE Trans. Geosci. Remote Sens., 56, 4522–4545, https://doi.org/10.1109/TGRS.2018.2824829.
Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 1272–1294, https://doi.org/10.1175/2008MWR2525.1.
Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli, 2003: The advanced very high resolution radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84, 785–793, https://doi.org/10.1175/BAMS-84-6-785.
Janowiak, J. E., P. A. Arkin, P. Xie, M. L. Morrissey, and D. R. Legates, 1995: An examination of the east Pacific ITCZ rainfall distribution. J. Climate, 8, 2810–2823, https://doi.org/10.1175/1520-0442(1995)008<2810:AEOTEP>2.0.CO;2.
Jethva, H. T., O. Torres, L. Remer, and P. K. Bhartia, 2013: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements. IEEE Trans. Geosci. Remote Sens., 51, 3862–3870, https://doi.org/10.1109/TGRS.2012.2230008.
Johnson, G. C., J. M. Lyman, and N. G. Loeb, 2016: Improving estimates of Earth’s energy imbalance. Nat. Climate Change, 6, 639–640, https://doi.org/10.1038/nclimate3043.
Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541–564, https://doi.org/10.1175/WAF-D-11-00090.1.
Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn- on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297–327, https://doi.org/10.1175/WAF-D-15-0107.1.
Kaplan, L. D., 1959: Inferences of atmospheric structures from satellite remote radiation measurements. J. Opt. Soc. Amer., 49, 1004–1014, https://doi.org/10.1364/JOSA.49.001004.
Karlsson, K.-G., 1989: Development of an operational cloud classification model. Int. J. Remote Sens., 10, 687–693, https://doi.org/10.1080/01431168908903910.
Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109–121, https://doi.org/10.1016/S0022-4073(98)00075-2.
Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146–164, https://doi.org/10.1175/JTECH-1694.1.
Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395–412, https://doi.org/10.1007/s10712-012-9179-x.
Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1.
Kato, S., and Coauthors, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1.
Kaufman, Y. J., D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102, 17 051–17 067, https://doi.org/10.1029/96JD03988.
Kaye, J. A., and T. L. Miller, 1996: The ATLAS series of Shuttle missions. Geophys. Res. Lett., 23, 2285–2288, https://doi.org/10.1029/96GL02228.
Khan, R., R. Anwar, S. Akanda, M. D. McDonald, A. Huq, A. Jutla, and R. Colwell, 2017: Assessment of risk of cholera in Haiti following Hurricane Matthew. Amer. J. Trop. Med. Hyg., 97, 896–903, https://doi.org/10.4269/ajtmh.17-0048.
Kidder, S. Q., and T. H. Vonder Haar, 1990: On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes. J. Atmos. Oceanic Technol., 7, 517–522, https://doi.org/10.1175/1520-0426(1990)007<0517:OTUOSI>2.0.CO;2.
Kidder, S. Q., W. M. Gray, and T. H. Vonder Haar, 1978: Estimating tropical cyclone central pressure and outer winds from satellite microwave data. Mon. Wea. Rev., 106, 1458–1464, https://doi.org/10.1175/1520-0493(1978)106<1458:ETCCPA>2.0.CO;2.