Abshaev, M. T., 1982: Hail detection with radar data (in Russian). Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana, 18, 483–494.
Abshaev, M. T., and O. I. Chepovskaya, 1966: Hail distribution function (in Russian). Meteor. Gidrol., 6, 36–42.
Abshaev, M. T., I. I. Burtsev, S. I. Vaksenberg, and G. F. Shevela, 1980: Guidance on the Use of Radar MRL-4, MRL-5 and MRL-6 in the System of Hail Suppression (in Russian). Gidrometeoizdat, 230 pp.
Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2214, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.
Akiyama, T., 1974: Mesoscale organization of cumulus convection in large-scale rain-band in the Baiu season. J. Meteor. Soc. Japan, 52, 448–451, https://doi.org/10.2151/jmsj1965.52.5_448.
Akiyama, T., 1978: Mesoscale pulsation of convective rain in medium-scale disturbances developed in Baiu front. J. Meteor. Soc. Japan, 56, 267–283, https://doi.org/10.2151/jmsj1965.56.4_267.
Alekseeva, A. A., M. V. Bukharov, V. M. Losev, and V. I. Soloviev, 2006: Diagnostics of precipitation and thunderstorms using measurements of outgoing longwave radiation from clouds on geostationary satellites (in Russian). Meteor. Gidrol., 8, 33–42.
Allen, J. T., 2018: Climate change and severe thunderstorms. Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.62.
Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979-2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 81–97, https://doi.org/10.1002/joc.3667.
Allen, J. T., D. J. Karoly, and G. A. Mills, 2011: A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust. Meteor. Oceanogr. J., 61, 143–158, https://doi.org/10.22499/2.6103.001.
Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278–283, https://doi.org/10.1038/ngeo2385.
Antonescu, B., D. M. Schultz, A. Holzer, and P. Groenemeijer, 2017: Tornadoes in Europe: An underestimated threat. Bull. Amer. Meteor. Soc., 98, 713–728, https://doi.org/10.1175/BAMS-D-16-0171.1.
Antonescu, B., J. G. Fairman, and D. M. Schultz, 2018: What is the worst that could happen? Reexamining the 24–25 June 1967 tornado outbreak over western Europe. Wea. Climate Soc., 10, 323–340, https://doi.org/10.1175/WCAS-D-17-0076.1.
Antonescu, B., H. M. A. M. Ricketts, and D. M. Schultz, 2019: 100 Years later: Reflecting on Alfred Wegener’s contributions to tornado research in Europe. Bull. Amer. Meteor. Soc., 100, 567–578, https://doi.org/10.1175/BAMS-D-17-0316.1.
Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805–818, https://doi.org/10.1175/2007JAMC1611.1.
Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 1214–1228, https://doi.org/10.1175/2007WAF2007004.1.
Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 1577–1592, https://doi.org/10.1175/BAMS-86-11-1577.
Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717–725, https://doi.org/10.1175/2007JAMC1689.1.
Ashley, W. S., and C. W. Gilson, 2009: A reassessment of U.S. lightning mortality. Bull. Amer. Meteor. Soc., 90, 1501–1518, https://doi.org/10.1175/2009BAMS2765.1.
Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470–482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.
Atlas, D., 2001: Reflections: A Memoir. Amer. Meteor. Soc., 329 pp.
Bally, J., 2004: The Thunderstorm Interactive Forecasting System: Turning automated tracks into severe weather warnings. Wea. Forecasting, 19, 64–72, https://doi.org/10.1175/1520-0434(2004)019<0064:TTIFST>2.0.CO;2.
Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden–Julian oscillation. Geophys. Res. Lett., 40, 2790–2795, https://doi.org/10.1002/grl.50522.
Barrett, B. S., and B. N. Henley, 2015: Intraseasonal variability of hail in the contiguous United States: Relationship to the Madden-Julian oscillation. Mon. Wea. Rev., 143, 1086–1103, https://doi.org/10.1175/MWR-D-14-00257.1.
Barrett, B. S., L. M. Farfán, G. B. Raga, and D. H. Hernández, 2017: The unusual early morning tornado in Ciudad Acuña, Coahuila, Mexico of 25 May 2015. Mon. Wea. Rev., 145, 2049–2069, https://doi.org/10.1175/MWR-D-16-0252.1.
Beck, V., and N. Dotzek, 2010: Reconstruction of near-surface tornado wind fields from forest damage. J. Appl. Meteor. Climatol., 49, 1517–1537, https://doi.org/10.1175/2010JAMC2254.1.
Beebe, R. G., 1958: Tornado proximity soundings. Bull. Amer. Meteor. Soc., 39, 195–201, https://doi.org/10.1175/1520-0477-39.4.195.
Berg, E. Yu., 1914: The largest daily maxima of precipitation over European Russia based on 25-year observations 1886–1910. Izv. Akad. Nauk. Seriya, 6, 1217–1234.
Betts, A. K., and M. A. Stevens, 1974: Rainfall and radar echo statistics: Venezuelan International Meteorological and Hydrological Experiment, 1972. Atmospheric Science Department, Colorado State University, 151 pp.
Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch, 2007: Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Global Planet. Change, 57, 124–138, https://doi.org/10.1016/j.gloplacha.2006.11.007.
Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 325–330.
Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor. Z., 21, 1–7.
Bluestein, H. B., and R. M. Wakimoto, 2003: Mobile radar observations of severe convective storms. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 105–136.
Bluestein, H. B., J. G. Ladue, H. Stein, D. Speheger, and W. P. Unruh, 1993: Doppler radar wind spectra of supercell tornadoes. Mon. Wea. Rev., 121, 2200–2221, https://doi.org/10.1175/1520-0493(1993)121<2200:DRWSOS>2.0.CO;2.
Borga, M., E. N. Anagnostou, G. Blöschl, and J.-D. Creutin, 2011: Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy, 14, 834–844, https://doi.org/10.1016/j.envsci.2011.05.017.
Braham, R. R., Jr., 1996: The Thunderstorm Project: 18th Conference on Severe Local Storms Luncheon Speech. Bull. Amer. Meteor. Soc., 77, 1835–1846, https://doi.org/10.1175/1520-0477-77.8.1835.
Brooks, H. E., and C. A. Doswell III, 2001a: Normalized damage from major tornadoes in the United States: 1890-1999. Wea. Forecasting, 16, 168–176, https://doi.org/10.1175/1520-0434(2001)016<0168:NDFMTI>2.0.CO;2.
Brooks, H. E., and C. A. Doswell III, 2001b: Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res., 56, 191–201, https://doi.org/10.1016/S0169-8095(00)00098-3.
Brooks, H. E., and C. A. Doswell III, 2002: Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective. Wea. Forecasting, 17, 354–361, https://doi.org/10.1175/1520-0434(2002)017<0354:DITMOC>2.0.CO;2.
Brooks, H. E., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 1501–1511, https://doi.org/10.1175/WAF-D-18-0120.1.
Brooks, H. E., C. A. Doswell III, and L. J. Wicker, 1993: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8, 352–362, https://doi.org/10.1175/1520-0434(1993)008<0352:SAFEUA>2.0.CO;2.
Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003a: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626–640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.
Brooks, H. E., J. W. Lee, and J. P. Craven, 2003b: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67-68, 73–94, https://doi.org/10.1016/S0169-8095(03)00045-0.
Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294–305, https://doi.org/10.1016/j.atmosres.2005.08.005.
Brooks, H. E., and Coauthors, 2011: Evaluation of European Storm Forecast Experiment (ESTOFEX) forecasts. Atmos. Res., 100, 538–546, https://doi.org/10.1016/j.atmosres.2010.09.004.
Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349–352, https://doi.org/10.1126/science.1257460.
Brown, R. A., D. W. Burgess, J. K. Carter, L. R. Lemon, and D. Sirmans, 1975: NSSL Dual-Doppler radar measurements in tornadic storms: A preview. Bull. Amer. Meteor. Soc., 56, 524–526, https://doi.org/10.1175/1520-0477(1975)056<0524:NDDRMI>2.0.CO;2.
Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.
Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135, https://doi.org/10.1002/qj.49708837602.
Browning, K. A., and C. R. Landry, 1963: Airflow within a tornadic storm. 10th Weather Radar Conf., Washington, DC, Amer. Meteor. Soc., 116–122.
Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 1939–1955, https://doi.org/10.1175/BAMS-88-12-1939.
Brylev, G. B., S. B. Gashina, B. Sh. Divinskaya, and E. M. Sal’man, 1971: Methodical basis for the operational processing of meteorological radar information on cloud cover and related severe events. Methodical Basis for the Automatized System of Meteorological Observations (in Russian), Gidrometeoizdat, 69–119.
Brylev, G. B., S. B. Gashina, and G. L. Nizdoyminoga, 1986: Radar characteristics of clouds and precipitation (in Russian). Gidrometeoizdat, 232 pp.
Brylev, G. B., V. D. Stepanenko, and G. G. Shchukin, 2009: On a development of national meteorological radar location (in Russian). Essays on the History of the Hydrometeorological Service of Russia, A. I. Bedritskii et al., Eds. Gidrometeoizdat, 205–215.
Bukharov, M. V., 1991: Study of conditions for hail recognition in satellite imagery (in Russian). Issledovaniya Zemli iz Kosmosa, 4, 74–82.
Bukharov, M. V., and A. A. Alekseeva, 2004: Diagnostics of potential showers and hail using measurements of outgoing longwave radiation on NOAA satellite (in Russian). Meteor. Gidrol., 9, 21–30.
Bunkers, M. J., B. A. Klimowski, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.
Bureau of Meteorology, 1972: Final report, Woden Valley Storm, 26 January 1971. Phenomena report, Bureau of Meteorology, Australia, 24 pp.
Bureau of Meteorology, 1989: Plan for Upgrading Severe Thunderstorm Warning Services, Bureau of Meteorology, Australia, 78 pp.
Bureau of Meteorology, 2006: Report on the 14 April 1999 Sydney Severe Hailstorm. Phenomena report, Bureau of Meteorology, Australia, 42 pp., http://www.bom.gov.au/inside/services_policy/storms/sydney_hail/hail_report.shtml.
Burgess, D. W., K. E. Wilk, J. D. Bonewitz, K. M. Glover, D. W. Holmes, and J. Hinkelman, 1979: Doppler radar: The Joint Doppler Operational Project. Weatherwise, 32, 72–75, https://doi.org/10.1080/00431672.1979.9931867.
Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Meteor., 5, 71–86, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.
Caracena, F., and J. M. Fritsch, 1983: Focusing mechanisms in the Texas Hill Country flash floods of 1978. Mon. Wea. Rev., 111, 2319–2332, https://doi.org/10.1175/1520-0493(1983)111<2319:FMITTH>2.0.CO;2.
Cecil, D. J., and C. B. Blankenship, 2012: Towards a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687–703, https://doi.org/10.1175/JCLI-D-11-00130.1.
Celay, M. L., 1963: A brief history of meteorology in Mexico and the present organization of the services. Weatherwise, 16, 208–236, https://doi.org/10.1080/00431672.1963.9927002.
Chan, S. C., E. J. Kendon, N. Roberts, S. Blenkinsop, and H. J. Fowler, 2018: Large-scale predictors for extreme hourly precipitation events in convection-permitting climate simulations. J. Climate, 31, 2115–2131, https://doi.org/10.1175/JCLI-D-17-0404.1.
Chappell, C. F., 1986: Quasi-stationary convective events. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 289–310.
Chisholm, A. J., and J. H. Renick, 1972: The kinematics of multi-cell and supercell Alberta hailstorms. Research Council of Alberta Hail Studies Rep. 72-2, 24–31.
Colquhoun, J. R., J. F. Corbett, A. G. Robin, and C. M. Purton, 1982: An Australian severe thunderstorm outbreak. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 322–325.
Cook, A. R., L. M. Leslie, D. B. Parsons, and J. T. Schaefer, 2017: The impact of El Niño–Southern Oscillation (ENSO) on winter and early spring U.S. tornado outbreaks. J. Appl. Meteor. Climatol., 56, 2455–2478, https://doi.org/10.1175/JAMC-D-16-0249.1.
Corfidi, S. F., 1999: The birth and early years of the Storm Prediction Center. Wea. Forecasting, 14, 507–525, https://doi.org/10.1175/1520-0434(1999)014<0507:TBAEYO>2.0.CO;2.
Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 13–24.
Crozier, C. L., P. I. Joe, J. W. Scott, H. N. Herscovitch, and T. R. Nichols, 1991: The King City operational Doppler radar: Development, all-season applications and forecasting. Atmos.–Ocean, 29, 479–516, https://doi.org/10.1080/07055900.1991.9649414.
Cunning, J. B., 1986: The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 1478–1486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.
Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.
Davies-Jones, R., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 105–114.
Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 1075–1093, https://doi.org/10.1175/BAMS-85-8-1075.
Dawson, D. T., II, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696–716, https://doi.org/10.1175/MWR-D-11-00008.1.
Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate. Geophys. Res. Lett., 34, L16703, https://doi.org/10.1029/2007GL030525.
de Sampaio Ferraz, J., 1927: Meteorological summary for Brazil, October 1927. Mon. Wea. Rev., 55, 500, https://doi.org/10.1175/1520-0493(1927)55<500d:MSFBO>2.0.CO;2.
Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 361–16 366, https://doi.org/10.1073/pnas.1307758110.
Doswell, C. A., III, 2007: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/26/27.
Doswell, C. A., III, and R. A. Maddox, 1996: A review of student performance on pretests given at the flash flood forecasting course. 15th Conf. on. Weather Analysis and Forecasting/Symp. on Flash Floods, Vienna, VA, Amer. Meteor. Soc., J1.12.
Doswell, C. A., III, and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853–863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.
Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash-flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.
Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577–595, https://doi.org/10.1175/WAF866.1.
Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554–563, https://doi.org/10.1016/j.atmosres.2008.11.003.
Dotzek, N., 2001: Tornadoes in Germany. Atmos. Res., 56, 233–251, https://doi.org/10.1016/S0169-8095(00)00075-2.
Dotzek, N., 2003: An updated estimate of tornado occurrence in Europe. Atmos. Res., 67-68, 153–161, https://doi.org/10.1016/S0169-8095(03)00049-8.
Dotzek, N., J. Grieser, and H. E. Brooks, 2003: Statistical modeling of tornado intensity distributions. Atmos. Res., 67–68, 163–187, https://doi.org/10.1016/S0169-8095(03)00050-4.
Dotzek, N., A. M. Holzer, R. E. Peterson, E. Richard, and C. Lüdecke, 2005: Alfred Wegener’s tornado research and his influence on Johannes Letzmann: Scientific achievements decades ahead of their time. Second Alfred Wegener Symp., Bremerhaven, Germany, https://www.researchgate.net/publication/224798106_Alfred_Wegener's_tornado_research_and_his_influence_on_Johannes_LetzmannScientific_achievements_decades_ahead_of_their_time.
Dotzek, N., P. P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575–586, https://doi.org/10.1016/j.atmosres.2008.10.020.
Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 1665–1677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.
Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 2381–2403, https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.
Drozdov, O. A., 1936: The method of meteorological stations network creating in a flat land (in Russian). Tr. Gl. Geofiz. Obs., 12, 10–109.
Dyaduchenko, V. N., Yu. B. Pavlyukov, and I. S. Vylegzhanin, 2014: Doppler radar in Russia (in Russian). Nauka v Rossii, 199, 23–27.
Edwards, R., 2006: Supercells of the Serranías del Burro (Mexico). 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P6.2, https://ams.confex.com/ams/23SLS/techprogram/paper_114980.htm.
Elsner, J. B., S. C. Elsner, and T. H. Jagger, 2015: The increasing efficiency of tornado days in the United States. Climate Dyn., 45, 651–659, https://doi.org/10.1007/s00382-014-2277-3.
Farfán, L. M., and J. A. Zehnder, 1994: Moving and stationary mesoscale convective systems over northwest Mexico during the Southwest Area Monsoon Project. Wea. Forecasting, 9, 630–639, https://doi.org/10.1175/1520-0434(1994)009<0630:MASMCS>2.0.CO;2.
Feng, X., and P. Houser, 2015: Quantifying the strength of land–atmosphere coupling in the 2004 North American monsoon. Atmos. Sci. Lett., 16, 391–397, https://doi.org/10.1002/asl2.573.
Feuerstein, B., and P. Groenemeijer, 2011: In memoriam Nikolai Dotzek. Atmos. Res., 100, 306–309, https://doi.org/10.1016/j.atmosres.2011.02.005.
Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–358, https://doi.org/10.1175/0065-9401-28.50.323.
Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 1333–1345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.
Fuchs, A., and H. Wolff, 2011: Concept and unintended consequences of weather index insurance: The case of Mexico. Amer. J. Agric. Econ., 93, 505–511, https://doi.org/10.1093/ajae/aaq137.
Fujita, T. T., 1951: Disturbances observed in the vicinity of the Okhotsk Sea anticyclone. Bull. Kyushu Inst. Technol., 1, 65–73.
Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405–436, https://doi.org/10.3402/tellusa.v7i4.8920.
Fujita, T. T., 1960: A detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Wea. Bur. Res. Paper 42, 67 pp.
Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511–1534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.
Fujita, T. T., 1992: Mystery of severe storms. Wind Research Laboratory Research Paper 239, Dept. of Geophysical Sciences, University of Chicago, 298 pp.
Fujita, T. T., and H. R. Byers, 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129–146, https://doi.org/10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.
Fujita, T. T., and R. M. Wakimoto, 1982: Effects of miso- and mesoscale obstructions on PAM winds obtained during the project NIMROD. J. Appl. Meteor., 21, 840–858, https://doi.org/10.1175/1520-0450(1982)021<0840:EOMAMO>2.0.CO;2.
Fujita, T. T., H. Newstein, and M. Tepper, 1957: Mesoanalysis: An important scale in the analysis of weather data. U.S. Weather Bureau Research Paper 39, 88 pp.
Fujita, T. T., D. L. Bradbury, and C. F. Van Thullenar, 1970: Palm Sunday tornadoes of April 11, 1965. Mon. Wea. Rev., 98, 29–69, https://doi.org/10.1175/1520-0493(1970)098<0029:PSTOA>2.3.CO;2.
Galway, J. G., 1985: J. P. Finley: The first severe storms forecaster. Bull. Amer. Meteor. Soc., 66, 1389–1395, https://doi.org/10.1175/1520-0477(1985)066<1389:JFTFSS>2.0.CO;2.
Galway, J. G., 1989: The evolution of severe thunderstorm criteria within the Weather Service. Wea. Forecasting, 4, 585–592, https://doi.org/10.1175/1520-0434(1989)004<0585:TEOSTC>2.0.CO;2.
Garstang, M., and Coauthors, 1990: The Amazon Boundary-Layer Experiment (ABLE-2B): A meteorological perspective. Bull. Amer. Meteor. Soc., 71, 19–32, https://doi.org/10.1175/1520-0477(1990)071<0019:TABLEA>2.0.CO;2.
Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1.
Gensini, V. A., and A. Marinaro, 2016: Tornado frequency in the United States related to global relative angular momentum. Mon. Wea. Rev., 144, 801–810, https://doi.org/10.1175/MWR-D-15-0289.1.
Gensini, V. A., and T. L. Mote, 2014: Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Climate, 27, 6581–6589, https://doi.org/10.1175/JCLI-D-13-00777.1.
Gensini, V. A., and J. T. Allen, 2018: U.S. hail frequency and the global wind oscillation. Geophys. Res. Lett., 45, 1611–1620, https://doi.org/10.1002/2017GL076822.
Ghidella de Hurtis, M., and M. E. Saluzzi, 1979: Study of a convective cloud numerical model (in Spanish). Geoacta, 10, 111–122.
Ghidella de Hurtis, M., and M. E. Saluzzi, 1980: Adaptation of a stationary state one dimensional model to the forecast of severe convection in Mendoza. Proc. Third WMO Scientific Conf. on Weather Modification, Clermont Ferrand, France, World Meteorological Organization, 733–740.
Giddings, L., M. Soto, B. M. Rutherford, and A. Maarouf, 2005: Standardized precipitation index zones for Mexico. Atmósfera, 18, 33–56.
Gochis, D. J., L. Brito-Castillo, and W. J. Shuttleworth, 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316, 53–70, https://doi.org/10.1016/j.jhydrol.2005.04.021.
Goliger, A. M., R. V. Milford, B. F. Adam, and M. Edwards, 1997: Inkanyamba: Tornadoes in South Africa. CSIR Building Technology and South African Weather Bureau, 77 pp.
Grandoso, H. N., 1966: Temporal and geographical distribution of hail in Mendoza and the relation to some meteorological parameters (in Spanish). Serie Meteorologia, Contribuciones Científicas, Vol. 1, Universidad de Buenos Aires, Vol. 1, 49 pp.
Grandoso, H. N., and J. Iribarne, 1963: Experiment on artificial modification of hailstorms in Mendoza. Seasons 1959-1960, 1960-61 and 1961-62 (in Spanish). Informes, Fasciculo 3, Universidad de Buenos Aires, 70 pp.
Grandoso, H. N., and L. M. H. Cantilo, 1968: Mesoanalysis of three typical storms in Mendoza (in Spanish). Serie Meteorologia, Contribuciones Científicas, Vol. 1, Universidad de Buenos Aires, 52 pp.
Grazulis, T. P., 2001: The Tornado: Nature’s Ultimate Windstorm. University of Oklahoma Press, 324 pp.
Griffiths, D., J. Colquhoun, K. Batt, and T. Casinader, 1993: Severe thunderstorms in New South Wales: Climatology and means of assessing the impact of climate change. Climatic Change, 25, 369–388, https://doi.org/10.1007/BF01098382.
Groenemeijer, P., and T. Kuhne, 2014: A climatology of tornadoes in Europe: Results from the European Severe Weather Database. Mon. Wea. Rev., 142, 4775–4790, https://doi.org/10.1175/MWR-D-14-00107.1.
Groenemeijer, P., and Coauthors, 2017: Severe convective storms in Europe: Ten years of research at the European Severe Storms Laboratory. Bull. Amer. Meteor. Soc., 98, 2641–2651, https://doi.org/10.1175/BAMS-D-16-0067.1.
Gutzler, D. S., and Coauthors, 2005: The North American monsoon model assessment project: Integrating numerical modeling into a field-based process study. Bull. Amer. Meteor. Soc., 86, 1423–1429, https://doi.org/10.1175/BAMS-86-10-1423.
Hanstrum, B. N., 2004: A national NWP based thunderstorm and severe thunderstorm forecasting guidance system. International Conference on Storms: AMOS 11th National Conf., Brisbane, Australia, Australian Meteorological and Oceanographic Society, 31–36.
Hanstrum, B. N., G. A. Mills, A. Watson, J. P. Monteverdi, and C. A. Doswell III, 2002: The cool-season tornadoes of California and southern Australia. Wea. Forecasting, 17, 705–722, https://doi.org/10.1175/1520-0434(2002)017<0705:TCSTOC>2.0.CO;2.
Held, G., R. V. Calheiros, and A. M. Gomes, 2007: The TroCCiBras Project: Goals, results from the 2004 campaign and the future (in Portuguese). Bol. Soc. Bras. Meteor., 31, 81–89.
Higgins, R. W., and D. Gochis, 2007: Synthesis of results from the North American Monsoon Experiment (NAME) process study. J. Climate, 20, 1601–1607, https://doi.org/10.1175/JCLI4081.1.
Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 2600–2622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.
Higgins, R. W., and Coauthors, 2003: Progress in pan-American CLIVAR research: The North American monsoon system. Atmósfera, 16, 29–65.
Hitchens, N. M., and H. E. Brooks, 2012: Evaluation of the Storm Prediction Center’s day 1 convective outlooks. Wea. Forecasting, 27, 1580–1585, https://doi.org/10.1175/WAF-D-12-00061.1.
Hitchens, N. M., and H. E. Brooks, 2014: Evaluation of the Storm Prediction Center’s convective outlooks from day 3 through day 1. Wea. Forecasting, 29, 1134–1142, https://doi.org/10.1175/WAF-D-13-00132.1.
Hitchens, N. M., and H. E. Brooks, 2017: Determining criteria for missed events to evaluate significant severe convective outlooks. Wea. Forecasting, 32, 1321–1328, https://doi.org/10.1175/WAF-D-16-0170.1.
Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective limits on forecasting skill of rare events. Wea. Forecasting, 28, 525–534, https://doi.org/10.1175/WAF-D-12-00113.1.
Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 58–67, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.
Hoekstra, S., K. Klockow, R. Riley, J. Brotzge, H. Brooks, and S. Erickson, 2011: A preliminary look at the social perspective of warn-on-forecast: Preferred tornado warning lead time and the general public’s perceptions of weather risks. Wea. Climate Soc., 3, 128–140, https://doi.org/10.1175/2011WCAS1076.1.
Houston, A. L., B. Argrow, J. Elston, J. Lahowetz, E. W. Frew, and P. C. Kennedy, 2012: The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment. Bull. Amer. Meteor. Soc., 93, 39–54, https://doi.org/10.1175/2011BAMS3073.1.
Howard, K. W., and R. A. Maddox, 1988: Mexican mesoscale convective systems—A satellite perspective. Third Inter-American and Mexican Congress of Meteorology, Mexico City, Mexico, Mexican Meteorological Organization, 404–408.
Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The Operational Weather Radar Network in Europe. Bull. Amer. Meteor. Soc., 95, 897–907, https://doi.org/10.1175/BAMS-D-12-00216.1.
Joe, P., and Coauthors, 1995: Recent progress in the operational forecasting of summer severe weather. Atmos.–Ocean, 33, 249–302, https://doi.org/10.1080/07055900.1995.9649534.
Joe, P., and Coauthors, 2018: The Environment Canada Pan and ParaPan American Science Showcase Project. Bull. Amer. Meteor. Soc., 99, 921–953, https://doi.org/10.1175/BAMS-D-16-0162.1.
Keul, A. G., and Coauthors, 2018: Multihazard weather risk perception and preparedness in eight countries. Wea. Climate Soc., 10, 501–520, https://doi.org/10.1175/WCAS-D-16-0064.1.
Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.
Klockow, K. E., R. A. Peppler, and R. A. McPherson, 2014: Tornado folk science in Alabama and Mississippi in the 27 April 2011 tornado outbreak. GeoJournal, 79, 791–804, https://doi.org/10.1007/s10708-013-9518-6.
Klockow-McClain, K. E., R. A. McPherson, and R. Thomas, 2019: Cartographic design for improved decision-making: Trade-offs in uncertainty visualization for tornado threats. Ann. Assoc. Amer. Geogr., https://doi.org/10.1080/24694452.2019.1602467.
Knight, C. A., 1982: The Cooperative Convective Precipitation Experiment (CCOPE), 18 May–7 August 1981. Bull. Amer. Meteor. Soc., 63, 386–398, https://doi.org/10.1175/1520-0477(1982)063<0386:TCCPEM>2.0.CO;2.
Koschmieder, H., and J. P. Letzmann, 1939: Erforschung von Tromben. Int. Meteor. Org., Klimatol. Komm., Protokolle der Tagung in Salzburg, 13.–17. September 1937, Publ. 38, Leyde, Anlage XI, 85–90. (Mit kommentierenden Briefen von J. B. Kincer, U.S. Weather Bureau.)
Kotov, N. F., and P. N. Nikolaev, 1958: The method for radar observations of thunderstorm and showers (in Russian). Tr. Tsentr. Aerol. Obs., 20, 17–25.
Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 59–69, https://doi.org/10.1175/WAF-D-17-0123.1.
Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405, https://doi.org/10.1002/qj.49712353807.
Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 2756–2776, https://doi.org/10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.
Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599–607, https://doi.org/10.1175/WAF-D-17-0145.1.
Lei, Y.-S., B.-J. Wu, and Z.-H. Wu, 1978: Introduction to Hail (in Chinese). China Science Press, 174 pp.
Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.
Letzmann, J. P., 1923: Die Peipus–Trombe am 3. August 1922. Sitz. Ber. Naturforsch. Ges. Univ. Dorpat, 28, 8–42.
Letzmann, J. P., 1925: Fortschreitende Luftwirbel. Meteor. Z., 42, 41–52.
Letzmann, J. P., 1928: Zur Methodik der Trombenforschung. Meteor. Z., 45, 434–439.
Letzmann, J. P., 1939: Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben. Int. Meteor. Org., Klimatol. Komm., Protokolle der Tagung in Salzburg, 13.–17. September 1937, Publ. 38, Leyde, Anlage XI, 91–110.
Letzmann, J. P., 1944: Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben. Forschungsstelle für atmosphärische Wirbel, Graz, 32 pp.
Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779–798, https://doi.org/10.1002/qj.49711649402.
Lima, J. S., 1982: Analysis of a funnel-cloud occurrence in Santa Maria, Rio Grande do Sul: Application of a forecasting method (in Portuguese). Proc. Second Brazilian Congress on Meteorology, Pelotas, Brazil, Braz. Meteor. Soc., 382–392.
Lindell, M. K., and H. E. Brooks, 2013: Workshop on Weather Ready Nation: Science imperatives for severe thunderstorm research. Bull. Amer. Meteor. Soc., 94, ES171–ES174, https://doi.org/10.1175/BAMS-D-12-00238.1.
Long, J. A., and P. C. Stoy, 2014: Peak tornado activity is occurring earlier in the heart of “Tornado Alley.” Geophys. Res. Lett., 41, 6259–6464, https://doi.org/10.1002/2014GL061385.
Lu, M., M. Tippett, and U. Lall, 2015: Changes in the seasonality of tornado and favorable genesis conditions in the central United States. Geophys. Res. Lett., 42, 4224–4231, https://doi.org/10.1002/2015GL063968.
Machado, L. A. T., and Coauthors, 2014: The CHUVA project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 1365–1380, https://doi.org/10.1175/BAMS-D-13-00084.1.
Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133–142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.
Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.
Maddox, R. A., 1983: Large-scale meteorological conditions associated with mid-latitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475–1493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.
Maddox, R. A., and C. A. Crisp, 1999: The Tinker AFB tornadoes of March 1948. Wea. Forecasting, 14, 492–499, https://doi.org/10.1175/1520-0434(1999)014<0492:TTATOM>2.0.CO;2.
Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375–389, https://doi.org/10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.
Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115–123, https://doi.org/10.1175/1520-0477-60.2.115.
Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 1866–1877, https://doi.org/10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.
Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 1577–1588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.
Magaña, V., J. L. Vásquez, J. L. Pérez, and J. B. Pérez, 2003: Impact of El Niño on precipitation in Mexico. Geofis. Int., 42, 313–330.
MANPUB, 1988: Manual of Standards and Procedures for Public Weather Service. 5th ed. Environment Canada–Atmospheric Environment Service, 132 pp.
Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852–876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.
Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, https://doi.org/10.1175/JAS-D-13-0159.1.
Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 1095–1104, https://doi.org/10.1175/JAS-D-16-0372.1.
Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.
Markowski, P. M., E. N. Rasmussen, J. M. Straka, R. P. Davies-Jones, Y. Richardson, and J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 3513–3535, https://doi.org/10.1175/2008MWR2315.1.
Markowski, P. M., Y. P. Richardson, S. J. Richardson, and A. Petersson, 2018: Aboveground thermodynamic observations in convective storms from balloonborne probes acting as pseudo-Lagrangian drifters. Bull. Amer. Meteor. Soc., 99, 711–724, https://doi.org/10.1175/BAMS-D-17-0204.1.
Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
Marshall, J. S., and K. L. S. Gunn, 1952: Measurement of snow parameters by radar. J. Meteor., 9, 322–327, https://doi.org/10.1175/1520-0469(1952)009<0322:MOSPBR>2.0.CO;2.
Martin, S. T., and Coauthors, 2017: The Green Ocean Amazon Experiment (GoAmazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bull. Amer. Meteor. Soc., 98, 981–997, https://doi.org/10.1175/BAMS-D-15-00221.1.
Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11, 166–179, https://doi.org/10.1175/1520-0450(1972)011<0166:TSAMOS>2.0.CO;2.
Mason, L. R., K. N. Ellis, B. Winchester, and S. Schexnayder, 2018: Tornado warnings at night: Who gets the message? Wea. Climate Soc., 10, 561–568, https://doi.org/10.1175/WCAS-D-17-0114.1.
Matsumoto, S., K. Ninomiya, and S. Yoshizumi, 1971: Characteristic features of Baiu front associated with heavy rainfall. J. Meteor. Soc. Japan, 49, 267–281, https://doi.org/10.2151/jmsj1965.49.4_267.
McCarthy, J., J. W. Wilson, and T. T. Fujita, 1982: The Joint Airport Weather Studies project. Bull. Amer. Meteor. Soc., 63, 15–22, https://doi.org/10.1175/1520-0477(1982)063<0015:TJAWSP>2.0.CO;2.
McCormick, G. C., and A. Hendry, 1975: Principles for the radar determination of the polarization properties of precipitation. Radio Sci., 10, 421–434, https://doi.org/10.1029/RS010i004p00421.
Meitín, J. G., K. W. Howard, and R. A. Maddox, 1991. Southwest Area Monsoon Project: Daily operations summary. Tech. Rep., National Severe Storms Laboratory, 137 pp.
Mills, G. A., and J. Colquhoun, 1998: Objective prediction of severe thunderstorm environments: Preliminary results linking a decision tree with an operational regional NWP model. Wea. Forecasting, 13, 1078–1092, https://doi.org/10.1175/1520-0434(1998)013<1078:OPOSTE>2.0.CO;2.
Mosiño, P. A., and E. García, 1974. The climate of Mexico. Climates of North America, Vol. 11, World Survey of Climatology, R. A. Bryson and F. K. Hare, Eds., Elsevier, 345–404.
Murphy, A. H., 1996: The Finley affair: A signal event in the history of forecast verification. Wea. Forecasting, 11, 3–20, https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2.
National Risk Atlas, 2016: Database of disaster declarations 2000–2015 (in Spanish). Accessed 5 October 2017, http://www.anr.gob.mx/Descargas/impacto_socioeconomico/BASE_IMPACTO_SOCIOECONOMICO_DESASTRES%202000_2015.xlsx.
Nesbitt, S. W., P. Borque, K. L. Rasmussen, P. Salio, R. J. Trapp, L. Vidal, M. Rugna, and J. Mulholland, 2016: Severe convection in central Argentina: storm modes and environments. Preprints, 28th Conf. Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 7A.6, https://ams.confex.com/ams/28SLS/webprogram/Paper301960.html.
Newark, M. J., 1984: Canadian tornadoes, 1950–1979. Atmos.–Ocean, 22, 343–353, https://doi.org/10.1080/07055900.1984.9649203.
Nicolini, M., and F. Norte, 1978: Relation between convective storms in the Province of Mendoza and associated synoptic situations (in Spanish). Report from hail season 1976–1977, chapter 3, Comisión Nacional de Investigaciones Espaciales, Argentina, 26–43.
Nicolini, M., and F. Norte, 1979a: Study of the natural behavior of some convective storms (Mendoza) (in Spanish). Geoacta, 10, 205–220.
Nicolini, M., and F. Norte, 1979b: Analysis of the environmental wind structure (in Spanish). Criterion of cellular classification of storms: Preliminary results, guides for future application and utility in operational tasks for investigation and action. M. Nicolini, Ed., Programa Nacional de Lucha Antigranizo, Comisión Nacional de Investigaciones Espaciales, Argentina, 96–139.
Nicolini, M., and F. Norte, 1980: Characteristics of Mendoza hailstorms and their environment. Proc. Third WMO Scientific Conf. on Weather Modification, Clermont Ferrand, France, World Meteorological Organization, 641–648.
Ninomiya, K., 1978: Heavy rainfalls associated with frontal depression in Asian subtropical humid region. J. Meteor. Soc. Japan, 56, 253–266, https://doi.org/10.2151/jmsj1965.56.4_253.
Ninomiya, K., and K. Kurihara, 1987: Forecast experiment of a long-lived meso-α-scale convective system in Baiu frontal zone. J. Meteor. Soc. Japan, 65, 885–899, https://doi.org/10.2151/jmsj1965.65.6_885.
Norte, F., 1980: Synoptic classification of convective storms and its relation with operational tasks in the field of defense: Hailstorm season of 1978–1979 (in Spanish). Programa Nacional de Lucha Antigranizo, Comisión Nacional de Investigaciones Espaciales, Argentina, 51–95.
Norte, F., 1982: Evaluation of instability indices and synoptic parameters as predictors for convective weather in north of Mendoza (in Spanish). Geoacta, 11, 193–206.
Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The characteristics of numerically simulated supercell storms situated over statically stable boundary layers. Mon. Wea. Rev., 139, 3139–3162, https://doi.org/10.1175/MWR-D-10-05087.1.
Nunes, A. M. P., M. A. F. Silva Dias, E. M. Anselmo, and C. A. Morales, 2016: Severe convection features in the Amazon Basin: A TRMM-based 15-year evaluation. Front. Earth Sci., 4, 37, https://doi.org/10.3389/feart.2016.00037.
Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1.
Pastukh, V. P., and R. F. Sokhrina, 1957: Hail over USSR territory (in Russian). Tr. Gl. Geofiz. Obs., 74, 3–21.
Peppler, R., K. E. Klockow-McClain, and R. Smith, 2018: Hazardscapes: Perceptions of tornado risk and the role of place in central Oklahoma. Explorations in Place Attachment, J. Smith, Ed., Routledge Press, 33–45.
Perdigón-Morales, J., R. Romero-Centeno, P. Ordóñez Pérez, and B. S. Barrett, 2018: The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database. Int. J. Climatol., 38, 2174–2186, https://doi.org/10.1002/joc.5322.
Peterson, R., 1992: Johannes Letzmann: A pioneer in the study of tornadoes. Wea. Forecasting, 7, 166–184, https://doi.org/10.1175/1520-0434(1992)007<0166:JLAPIT>2.0.CO;2.
Phillips, E., 1965: The Nurmurkah Tornado of August 1964. Aust. Meteor. Mag., 48, 37–45.
Plukss, A., 1979. The tornadoes of 13 November 1976 in Victoria with particular reference to the Sandon area. Bureau of Meteorology Australia Met. Note 101, 16 pp.
Pommereau, J.-P., and Coauthors, 2011: An overview of the HIBISCUS campaign. Atmos. Chem. Phys., 11, 2309–2339, https://doi.org/10.5194/acp-11-2309-2011.
Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 3137–3160, https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.
Púčik, T., and Coauthors, 2017: Future changes in European severe convection environments in a regional climate model ensemble. J. Climate, 30, 6771–6794, https://doi.org/10.1175/JCLI-D-16-0777.1.
Purdam, P. J., 2007: 3D-Rapic—The Australian radar visualization system. 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P13B.18, https://ams.confex.com/ams/33Radar/webprogram/Paper123331.html.
Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.
Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 995–1006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.
Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 2399–2420, https://doi.org/10.1175/MWR-D-10-05006.1.
Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 7359–7366, https://doi.org/10.1002/2014GL061767.
Rauhala, J., and D. M. Schultz, 2009: Severe thunderstorm and tornado warnings in Europe. Atmos. Res., 93, 369–380, https://doi.org/10.1016/j.atmosres.2008.09.026.
Rauhala, J., H. E. Brooks, and D. M. Schultz, 2012: Tornado climatology of Finland. Mon. Wea. Rev., 140, 1446–1456, https://doi.org/10.1175/MWR-D-11-00196.1.
Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.
Richter, H., 2012: The Australian National Thunderstorm Forecast Guidance System: Current design, verification and future plans. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 15.5, https://ams.confex.com/ams/26SLS/webprogram/Paper211868.html.
Ripberger, J. T., C. L. Silva, H. C. Jenkins-Smith, D. E. Carlson, M. James, and K. G. Herron, 2015: False alarms and missed events: The impact and origins of perceived inaccuracy in tornado warning systems. Risk Anal., 35, 44–56, https://doi.org/10.1111/risa.12262.
Robinson, E. D., R. J. Trapp, and M. E. Baldwin, 2013: The geospatial and temporal distributions of severe thunderstorms from high-resolution dynamical downscaling. J. Appl. Meteor. Climatol., 52, 2147–2161, https://doi.org/10.1175/JAMC-D-12-0131.1.
Rogers, R. R., 1996: A short history of meteorology at McGill. CMOS Bull. SCMO, 24, 144–148.
Romatschke, U., and R. A. Houze, 2010: Extreme summer convection in South America. J. Climate, 23, 3761–3791, https://doi.org/10.1175/2010JCLI3465.1.
Ropelewski, C. F., D. S. Gutzler, R. W. Higgins, and C. R. Mechoso, 2005: The North American monsoon system. The Global Monsoon System: Research and Forecast, C. P. Chang, B. Wang, and N. C. G. Lau, Eds., World Scientific, 207–218.
Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 2025–2043, https://doi.org/10.1175/BAMS-D-16-0100.1.
Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586, https://doi.org/10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2.
Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.
Russell, A., G. Vaughan, E. G. Norton, C. J. Morcrette, K. A. Browning, and A. M. Blyth, 2008: Convective inhibition beneath an upper-level PV anomaly. Quart. J. Roy. Meteor. Soc., 134, 371–383, https://doi.org/10.1002/qj.214.
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809–824, https://doi.org/10.1175/BAMS-86-6-809.
Sal’man, E. M., G. B. Brylev, B. Sh. Divinskaya, V. K. Zotov, and A. A. Fedorov, 1962: The complex use of radar and satellite data for analyzing meso- and macro-scale cloud systems (in Russian). Meteor. Gidrol., 2, 44–49.
Sal’man, E. M., S. B. Gashina, and B. Sh. Divinskaya, 1969: Radar criteria for separation thunderstorm and showery activity (in Russian). Meteor. Gidrol., 4, 79–83.
Saluzzi, M., 1983: Physical aspects of severe convection in Mendoza (in Spanish). Doctoral thesis, Universidad de Buenos Aires, 115 pp.
Saluzzi, M., and J. M. Nuñez, 1975: Behavior of hailstorms over various cultivated areas of the country (in Spanish). Geoacta, 7, 77–90.
Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20, 775–788, https://doi.org/10.1175/WAF881.1.
Schoen, J. M., and W. S. Ashley, 2011: A climatology of fatal convective wind events by storm time. Wea. Forecasting, 26, 109–121, https://doi.org/10.1175/2010WAF2222428.1.
Schwarzkopf, M. L. A., 1984: Severe Thunderstorms and Tornadoes: 1984 Bulletin (in Spanish; abbreviated TSyT). Boletin del Proyecto Estudio de los Tornados en la Republica Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 20 pp.
Schwarzkopf, M. L. A., and L. C. Rosso, 1993: Risk of tornadoes and downdrafts in Argentina (in Spanish). Tech. Rep., Instituto Nacional de Tecnologia Industrial y Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 30 pp.
Shikhov, A. N., and A. V. Chernokulsky, 2018: A satellite-derived climatology of unreported tornadoes in forested regions of northeast Europe. Remote Sens. Environ., 204, 553–567, https://doi.org/10.1016/j.rse.2017.10.002.
Shishkin, N. S., 1961: Forecasting thunderstorms and showers by the slice method. Tellus, 13, 417–424, https://doi.org/10.3402/tellusa.v13i3.9503.
Shupyatskii, A. B., L. A. Dinevich, and R. P. Tychina, 1975: Remote indication of hail in clouds based on radar characteristics (in Russian). Tr. Tsentr. Aerolog. Observ., 121, 18–27.
Sills, D. M. L., 2009: On the MSC Forecasters Forums and the future role of the human forecaster. Bull. Amer. Meteor. Soc., 90, 619–627, https://doi.org/10.1175/2008BAMS2657.1.
Sills, D. M. L., and P. I. Joe, 2019: From pioneers to practitioners: A short history of severe thunderstorm research and forecasting in Canada. Atmos.–Ocean, https://doi.org/10.1080/07055900.2019.1673145, in press.
Silva Dias, M. A. F., and Coauthors, 2002: Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J. Geophys. Res., 107, 8072, https://doi.org/10.1029/2001JD000335.
Silva Dias, M. A. F., 2011: An increase in the number of tornado reports in Brazil. Wea. Climate Soc., 3, 209–217, https://doi.org/10.1175/2011WCAS1095.1.
Silver, A., 2015: Watch or warning? Perceptions, preferences, and usage of forecast information by members of the Canadian public. Meteor. Appl., 22, 248–255, https://doi.org/10.1002/met.1452.
Simmons, K. M., and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado casualties. Wea. Forecasting, 20, 301–310, https://doi.org/10.1175/WAF857.1.
Simmons, K. M., and D. Sutter, 2011: Economic and Societal Impacts of Tornadoes. Amer. Meteor. Soc., 282 pp.
Smith, W. P., and R. L. Gall, 1989: Tropical squall lines of the Arizona monsoon. Mon. Wea. Rev., 117, 1553–1569, https://doi.org/10.1175/1520-0493(1989)117<1553:TSLOTA>2.0.CO;2.
SMN, 2017: Historia del Servicio Meteorológico Nacional. Accessed 28 October 2017, Servicio Meteorológico Nacional, http://smn.cna.gob.mx/es/smn/historia.
Snitkovskii, A. I., 1987: Tornadoes in the USSR (in Russian). Meteor. Gidrol., 9, 12–25.
Spasskii, M. F., 1847: On the Climate of Moscow (in Russian). Moscow: Universitetskaya tipographiya, 270 pp.
Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 1487–1500, https://doi.org/10.1175/2009BAMS2795.1.