Aamaas, B., T. K. Berntsen, J. S. Fuglestvedt, K. P. Shine, and W. J. Collins, 2017: Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models. Atmos. Chem. Phys., 17, 10 795–10 809, https://doi.org/10.5194/acp-17-10795-2017.
Abbott, C. G., and F. E. Fowle, 1908: Recent determination of the solar constant of radiation. Terr. Magn. Atmos. Electr., 13, 79–82, https://doi.org/10.1029/TE013i002p00079.
Achakulwisut, P., L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan, and B. Alexander, 2015: Uncertainties in isoprene photochemistry and emissions: Implications for the oxidative capacity of past and present atmospheres and for climate forcing agents. Atmos. Chem. Phys., 15, 7977–7998, https://doi.org/10.5194/acp-15-7977-2015.
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042.
Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274–278, https://doi.org/10.1038/nature02101.
Adams, P. J., J. H. Seinfeld, D. Koch, L. Mickley, and D. Jacob, 2001: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys. Res., 106, 1097–1111, https://doi.org/10.1029/2000JD900512.
Ahlm, L., A. Jones, W. C. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson, 2017: Marine cloud brightening—As effective without clouds. Atmos. Chem. Phys., 17, 13 071–13 087, https://doi.org/10.5194/acp-17-13071-2017.
Albani, S., and Coauthors, 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279.
Albani, S., Y. Balkanski, N. Mahowald, G. Winckler, V. Maggi, and B. Delmonte, 2018: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Climate Change Rep., 4, 99–114, https://doi.org/10.1007/s40641-018-0100-7.
Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227.
Alexander, B., and L. J. Mickley, 2015: Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions. Curr. Pollut. Rep., 1, 57–69, https://doi.org/10.1007/s40726-015-0006-0.
Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 8219–8246, https://doi.org/10.1175/JCLI-D-15-0148.1.
Alterskjær, K., and J. E. Kristjánsson, 2013: The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys. Res. Lett., 40, 210–215, https://doi.org/10.1029/2012GL054286.
Alterskjær, K., J. E. Kristjánsson, and Ø. Seland, 2012: Sensitivity to deliberate sea salt seeding of marine clouds—Observations and model simulations. Atmos. Chem. Phys., 12, 2795–2807, https://doi.org/10.5194/acp-12-2795-2012.
Altshuller, A. P., and J. J. Bufalini, 1965: Photochemical aspects of air pollution: A review. Photochem. Photobiol., 4, 97–146, https://doi.org/10.1111/j.1751-1097.1965.tb05731.x.
Ammann, C., G. Meehl, W. Washington, and C. Zender, 2003: A monthly and latitudinally varying forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875.
Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843.
Andela, N., and Coauthors, 2017: A human-driven decline in global burned area. Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108.
Anderson, T. R., E. Hawkins, and P. D. Jones, 2016: CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth system models. Endeavour, 40, 178–187, https://doi.org/10.1016/j.endeavour.2016.07.002.
Andersson, S., B. Martinsson, J.-P. Vernier, J. Friberg, C. A. M. Brenninkmeijer, M. Hermann, P. van Velhoven, and A. Zahn, 2014: Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692.
Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955–966, https://doi.org/10.1029/2000GB001382.
Andreae, M. O., C. D. Jones, and P. M. Cox, 2005: Strong present-day aerosol cooling implies a hot future. Nature, 435, 1187–1190, https://doi.org/10.1038/nature03671.
Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, https://doi.org/10.1029/2007GL032273.
Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.
Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619–635, https://doi.org/10.1007/s10712-011-9152-0.
Andrews, T., R. A. Betts, B. B. Booth, C. D. Jones, and G. S. Jones, 2017: Effective radiative forcing from historical land use change. Climate Dyn., 48, 3489–3505, https://doi.org/10.1007/s00382-016-3280-7.
Antico, A., and M. E. Torres, 2015: Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett., 42, 10 782–10 787, https://doi.org/10.1002/2015GL066089.
Antuña, J. C., A. Robock, G. L. Stenchikov, J. Zhou, C. David, J. Barnes, and L. Thomason, 2003: Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption. J. Geophys. Res., 108, 4624, https://doi.org/10.1029/2003JD003722.
Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res., 117, D06216, https://doi.org/10.1029/2011JD016968.
Aquila, V., C. I. Garfinkel, P. A. Newman, L. D. Oman, and D. W. Waugh, 2014: Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett., 41, 1738–1744, https://doi.org/10.1002/2013GL058818.
Archer, D., and S. Rahmstorf, 2010: The Climate Crisis. Cambridge University Press, 250 pp.
Arfeuille, F., and Coauthors, 2013: Modeling the stratospheric warming following the Mt. Pinatubo eruption: Uncertainties in aerosol extinctions. Atmos. Chem. Phys., 13, 11 221–11 234, https://doi.org/10.5194/acp-13-11221-2013.
Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525–532, https://doi.org/10.1038/ngeo905.
Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237–276, https://doi.org/10.1080/14786449608620846.
Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 7664–7669, https://doi.org/10.1073/pnas.0711648105.
Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423–434, https://doi.org/10.1007/s00382-009-0583-y.
Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063.
Ban-Weiss, G., L. Cao, G. Bala, and K. Caldeira, 2011: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897–911, https://doi.org/10.1007/s00382-011-1052-y.
Banerjee, A., A. C. Maycock, A. T. Archibald, N. L. Abraham, P. Telford, P. Braesicke, and J. A. Pyle, 2016: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016.
Baran, A. J., and J. S. Foot, 1994: New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption. J. Geophys. Res., 99, 25 673–25 679, https://doi.org/10.1029/94JD02044.
Bardeen, C. G., O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey, 2008: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res., 113, D17202, https://doi.org/10.1029/2007JD009515.
Barnes, J. E., and D. J. Hofmann, 1997: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory. Geophys. Res. Lett., 24, 1923–1926, https://doi.org/10.1029/97GL01943.
Barriopedro, D., R. Garcıa-Herrera, and R. Huth, 2008: Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res., 113, D14118, https://doi.org/10.1029/2008JD009789.
Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301.
Bates, D. R., and A. E. Witherspoon, 1952: The photochemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Geophys. J. Int., 6, 324, https://doi.org/10.1111/j.1365-246X.1952.tb03020.x.
Baumgardner, D., J. E. Dye, R. G. Knollenberg, and B. W. Gandrud, 1992: Interpretation of measurements made by the FSSP-300X during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res., 97, 8035–8046, https://doi.org/10.1029/91JD02728.
Bellouin, N., O. Boucher, J. M. Haywood, and M. S. Reddy, 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138–1141, https://doi.org/10.1038/nature04348.
Bellouin, N., J. Rae, A. Jones, C. Johnson, J. M. Haywood, and O. Boucher, 2011: Aerosol forcing in the CMIP5 simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, https://doi.org/10.1029/2011JD016074.
Berdahl, M., A. Robock, D. Ji, J. C. Moore, A. Jones, B. Kravitz, and S. Watanabe, 2014: Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios. J. Geophys. Res. Atmos., 119, 1308–1321, https://doi.org/10.1002/2013JD020627.
Berntsen, T. K., I. S. A. Isaksen, G. Myhre, J. S. Fuglestvedt, F. Stordal, T. A. Larsen, R. S. Freckleton, and K. P. Shine, 1997: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res., 102, 28 101–28 126, https://doi.org/10.1029/97JD02226.
Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.
Bingen, C., D. Fussen, and F. Vanhellemont, 2004a: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations. J. Geophys. Res., 109, D06201, https://doi.org/10.1029/2003JD003518.
Bingen, C., D. Fussen, and F. Vanhellemont, 2004b: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data. J. Geophys. Res., 109, D06202, https://doi.org/10.1029/2003JD003511.
Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 4937–4951, https://doi.org/10.1175/JCLI-D-13-00650.1.
Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 2997–3013, https://doi.org/10.1175/JCLI-D-15-0328.1.
Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151–154, https://doi.org/10.1029/91GL02792.
Bluth, G. J. S., C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1993: The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature, 366, 327–329, https://doi.org/10.1038/366327a0.
Bock, L., and U. Burkhardt, 2016: Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. Atmos., 121, 9717–9736, https://doi.org/10.1002/2016JD025112.
Bock, L., and U. Burkhardt, 2019: Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys., 19, 8163–8174, https://doi.org/10.5194/acp-19-8163-2019.
Boer, G. J., and B. Yu, 2003: Climate sensitivity and climate state. Climate Dyn., 21, 167–176, https://doi.org/10.1007/s00382-003-0323-7.
Bolin, B., and R. J. Charlson, 1976: On the role of the tropospheric sulfur cycle in the shortwave radiative climate of the Earth. Ambio, 5, 47–54.
Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505, https://doi.org/10.1126/science.1204994.
Bonan, G., 2008: Forests and climate change: Forcings, feedbacks and the climate benefits of forests. Science, 320, 1444–1448, https://doi.org/10.1126/science.1155121.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171.
Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, https://doi.org/10.1175/JCLI3819.1.
Borrman, S., and Coauthors, 2000: Stratospheric aerosol measurements in the Arctic winter of 1996/1997 with the M-55 Geophysika high-altitude research aircraft. Tellus, 52B, 1088–1103, https://doi.org/10.3402/tellusb.v52i4.17085.
Boucher, O., 1995: GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J. Climate, 8, 1403–1409, https://doi.org/10.1175/1520-0442(1995)008<1403:GEOTIA>2.0.CO;2.
Boucher, O., 1999: Air traffic may increase cirrus cloudiness. Nature, 397, 30–31, https://doi.org/10.1038/16169.
Boucher, O., and T. L. Anderson, 1995: General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res., 100, 26 117–26 134, https://doi.org/10.1029/95JD02531.
Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. Tellus, 47B, 281–300, https://doi.org/10.3402/tellusb.v47i3.16048.
Boucher, O., and D. Tanré, 2000: Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophys. Res. Lett., 27, 1103–1106, https://doi.org/10.1029/1999GL010963.
Boucher, O., and J. Haywood, 2001: On summing the components of radiative forcing of climate change. Climate Dyn., 18, 297–302, https://doi.org/10.1007/s003820100185.
Boucher, O., and Coauthors, 1998: Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103, 16 979–16 998, https://doi.org/10.1029/98JD00997.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.
Bourassa, A. E., D. A. Degenstein, R. L. Gattinger, and E. J. Llewellyn, 2007: Stratospheric aerosol retrieval with OSIRIS limb scatter measurements. J. Geophys. Res., 112, D10217, https://doi.org/10.1029/2006JD008079.
Bourassa, A. E., D. A. Degenstein, and E. J. Llewellyn, 2008: Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra. Atmos. Chem. Phys., 8, 6375–6380, https://doi.org/10.5194/acp-8-6375-2008.
Bousquet, P., D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, 2005: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. Atmos. Chem. Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005.
Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
Bowman, K. W., and Coauthors, 2013: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp-13-4057-2013.
Brasseur, G. P., 2009: Implications of climate change for air quality. WMO Bull., 58, 10–15.
Brasseur, G. P., and C. Granier, 1992: Mount Pinatubo aerosols, chlorofluorocarbons and ozone depletion. Science, 257, 1239–1242, https://doi.org/10.1126/science.257.5074.1239.
Brasseur, G. P., J. T. Kiehl, J.-F. Müller, T. Schneider, C. Granier, X. Tie, and D. Hauglustaine, 1998: Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophys. Res. Lett., 25, 3807–3810, https://doi.org/10.1029/1998GL900013.
Brenguier, J.-L., and Coauthors, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815–827, https://doi.org/10.1034/j.1600-0889.2000.00047.x.
Brimblecombe, P., and C. Bowler, 1990: Air pollution history, York 1850–1900. The Silent Countdown, P. Brimblecombe and C. Pfister, Eds., Springer, 182–195.
Broccoli, A., K. Dixon, T. Delworth, T. Knutson, and R. Stouffer, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, https://doi.org/10.1029/2003JD003812.
Brock, C. A., P. Hamill, J. C. Wilson, H. H. Jonsson, and K. R. Chan, 1995: Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol. Science, 270, 1650–1653, https://doi.org/10.1126/science.270.5242.1650.
Brühl, C., J. Lelieveld, P. J. Crutzen, and H. Tost, 2012: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012.
Brühl, C., J. Lelieveld, H. Tost, M. Höpfner, and N. Glatthor, 2015: Stratospheric sulphur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos., 120, 2103–2118, https://doi.org/10.1002/2014JD022430.
Bryan, K., S. Manabe, and M. Spelman, 1988: Interhemispheric asymmetry in the transient response of a coupled ocean–atmosphere model to a CO2 forcing. J. Phys. Oceanogr., 18, 851–867, https://doi.org/10.1175/1520-0485(1988)018<0851:IAITTR>2.0.CO;2.
Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109.
Burkhardt, U., and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 54–58, https://doi.org/10.1038/nclimate1068.
Burrows, J. P., E. Hölzle, A. P. H. Goede, H. Visser, and W. Fricke, 1995: SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography. Acta Astronaut., 35, 445–451, https://doi.org/10.1016/0094-5765(94)00278-T.
Cadle, R. D., and E. R. Allen, 1970: Atmospheric photochemistry. Science, 167, 243–263, https://doi.org/10.1126/science.167.3916.243.
Caldeira, K., G. Bala, and L. Cao, 2013: The science of geoengineering. Annu. Rev. Earth Planet. Sci., 41, 231–256, https://doi.org/10.1146/annurev-earth-042711-105548.
Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223–240, https://doi.org/10.1002/qj.49706427503.
Callendar, G. S., 1941: Infra-red absorption by carbon dioxide, with special reference to atmospheric radiation. Quart. J. Roy. Meteor. Soc., 67, 263–275, https://doi.org/10.1002/qj.49706729105.
Carn, S. A., A. J. Krueger, G. J. S. Bluth, S. J. Schaefer, N. A. Krotkov, I. M. Watson, and S. Datta, 2003: Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulfur dioxide and ash emissions. Volcanic Degassing, C. Oppenheimer, D. M. Pyle, and J. Barclay, Eds., Geological Society, 177–202.
Carn, S. A., L. Clarisse, and A. J. Prata, 2016: Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res., 311, 99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002.
Carslaw, K. S., O. Boucher, D. Spracklen, G. Mann, J. G. Rae, S. Woodward, and M. Kumala, 2010: A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys., 10, 1701–1737, https://doi.org/10.5194/acp-10-1701-2010.
Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71, https://doi.org/10.1038/nature12674.
Carslaw, K. S., H. Gordon, D. S. Hamilton, J. S. Johnson, L. A. Regayre, M. Yoshioka, and K. J. Pringle, 2017: Aerosols in the pre-Industrial atmosphere. Curr. Climate Change Rep., 3, 1–15, https://doi.org/10.1007/s40641-017-0061-2.
Cess, R. D., 1976: Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology. J. Atmos. Sci., 33, 1831–1843, https://doi.org/10.1175/1520-0469(1976)033<1831:CCAAOA>2.0.CO;2.
Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 601–16 615, https://doi.org/10.1029/JD095iD10p16601.
Cess, R. D., and Coauthors, 1993: Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255, https://doi.org/10.1126/science.262.5137.1252.
Chamberlain, J. W., H. M. Foley, G. J. MacDonald, and M. A. Ruderman, 1982: Climate effects of minor atmospheric constituents. Carbon Dioxide Review: 1982, W. Clark, Ed., Oxford University Press, 255–277.
Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 8751–8760, https://doi.org/10.1029/JC078i036p08751.
Chameides, W., and R. J. Cicerone, 1978: Effects of nonmethane hydrocarbons in the atmosphere. J. Geophys. Res., 83, 947–952, https://doi.org/10.1029/JC083iC02p00947.
Chanin, M.-L., and Coauthors, 1998: Trends in stratospheric temperatures. Scientific assessment of ozone depletion: 1998, WMO Global Ozone Research and Monitoring Project Rep. 44, 5.1–5.59.
Chapman, S., 1930: On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci., 10, 369–383, https://doi.org/10.1080/14786443009461588.
Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152–163, https://doi.org/10.3402/tellusa.v43i4.11944.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423.
Chédin, A., N. Husson, and N. A. Scott, 1982: Une banque de données pour l’étude des phénomènes de transfert radiatif dans les atmosphères planétaires: La banque GEISA. Bull. Inf. Cent. Données Stellaires, 22, 121–124.
Chen, C.-C., and A. Gettelman, 2016: Simulated 2050 aviation radizforcing from contrails and aerosols. Atmos. Chem. Phys., 16, 7317–7333, https://doi.org/10.5194/acp-16-7317-2016.
Chen, C.-T., and V. Ramaswamy, 1996: Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. Part II: Spatially localized perturbations. J. Climate, 9, 2788–2801, https://doi.org/10.1175/1520-0442(1996)009<2788:SOSGCT>2.0.CO;2.
Chen, Y. C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643–646, https://doi.org/10.1038/ngeo2214.
Chen, Y. C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 2819–2833, https://doi.org/10.1002/2014JD022736.
Chiodo, G., L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, E. Rozanov, S. Muthers, and K. Tsigaridis, 2018: The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, 3893–3907, https://doi.org/10.1175/JCLI-D-17-0492.1.
Chiou, E. W., L. W. Thomason, and W. P. Chu, 2006: Variability of stratospheric water vapor inferred from SAGE II, HALOE, and Boulder (Colorado) balloon measurements. J. Climate, 19, 4121–4133, https://doi.org/10.1175/JCLI3841.1.
Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 6970–6977, https://doi.org/10.1002/2014GL061320.
Christensen, M. W., Y. C. Chen, and G. L. Stephens, 2016: Aerosol indirect effect dictated by liquid clouds. J. Geophys. Res. Atmos., 121, 14 636–14 650, https://doi.org/10.1002/2016JD025245.
Christoforou, P., and S. Hameed, 1997: Solar cycle and the Pacific ‘centers of action.’ Geophys. Res. Lett., 24, 293–296, https://doi.org/10.1029/97GL00017.
Chuang, C. C., J. E. Penner, K. E. Taylor, and J. J. Walton, 1993: Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model. Lawrence Livermore National Laboratory Rep. UCRL-JC-114078, 5 pp., http://inis.iaea.org/search/search.aspx?orig_q=RN:25046956.
Chung, C. E., and V. Ramanathan, 2006: Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19, 2036–2045, https://doi.org/10.1175/JCLI3820.1.
Chung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110, D24207, https://doi.org/10.1029/2005JD006356.
Chung, E.-S., and B. J. Soden, 2015: An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models. J. Climate, 28, 4152–4170, https://doi.org/10.1175/JCLI-D-14-00436.1.
Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566–571, https://doi.org/10.1038/NGEO2988.
Chylek, P., and J. A. Coakley, 1974: Aerosols and climate. Science, 183, 75–77, https://doi.org/10.1126/science.183.4120.75.
Chylek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929–931, https://doi.org/10.1029/95GL00800.
Ciais, P., and Coauthors, 2013a: Attributing the increase in atmospheric CO2 to emitters and absorbers. Nat. Climate Change, 3, 926–930, https://doi.org/10.1038/nclimate1942.
Ciais, P., and Coauthors, 2013b: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465–570, https://doi.org/10.1017/CBO9781107415324.015.
Clark, W. C., Ed., 1982: Carbon Dioxide Review: 1982. Oxford University Press, 469 pp., https://www.osti.gov/biblio/5963903-carbon-dioxide-review.
Clette, F., and L. Lefèvre, 2016: The new sunspot number: Assembling all corrections. Sol. Phys., 291, 2629–2651, https://doi.org/10.1007/s11207-016-1014-y.
Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 761–15 785, https://doi.org/10.1029/92JD01419.
Coakley, J. A., Jr., 1981: Stratospheric aerosols and the tropospheric energy budget: Theory versus observations. J. Geophys. Res., 86, 9761–9766, https://doi.org/10.1029/JC086iC10p09761.
Coakley, J. A., Jr, R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–1022, https://doi.org/10.1126/science.237.4818.1020.
Coddington, O., J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, 2016: A solar irradiance climate data record. Bull. Amer. Meteor. Soc., 97, 1265–1282, https://doi.org/10.1175/BAMS-D-14-00265.1.
Cole-Dai, J., 2010: Volcanoes and climate. Wiley Interdiscip. Rev.: Climate Change, 1, 824–839, https://doi.org/10.1002/wcc.76.
Collins, J. W., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017.
Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.
Collins, W. D., D. R. Feldman, C. Kuo, and N. H. Nguyen, 2018: Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Sci. Adv., 4, eaas9593, https://doi.org/10.1126/sciadv.aas9593.
Collins, W. J., S. Sitch, and O. Boucher, 2010: How vegetation impacts affect climate metrics for ozone precursors. J. Geophys. Res., 115, D23308, https://doi.org/10.1029/2010JD014187.
Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, 2013: Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys., 13, 2471–2485, https://doi.org/10.5194/acp-13-2471-2013.
Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23, 778–785, https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2.
Cooke, W. F., and J. J. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19 395–19 409, https://doi.org/10.1029/96JD00671.
Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1× 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104, 22 137–22 162, https://doi.org/10.1029/1999JD900187.
Costantino, L., and F. M. Bréon, 2013: Aerosol indirect effect on warm clouds over south-east Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13, 69–88, https://doi.org/10.5194/acp-13-69-2013.
Crook, J. A., L. S. Jackson, S. M. Osprey, P. M. Forster, 2015: A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos., 120, 9352–9373, https://doi.org/10.1002/2015JD023269.
Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320–325, https://doi.org/10.1002/qj.49709640815.
Crutzen, P. J., 1972a: SST’s: A threat to the Earth’s ozone shield. Ambio, 1, 41–51. http://www.jstor.org/stable/4311946.
Crutzen, P. J., 1972b: Gas-phase nitrogen and methane chemistry in the atmosphere. Proc. Physics and Chemistry of Upper Atmospheres, Orléans, France, Summer Advanced Study Institute, 110–124, https://doi.org/10.1007/978-94-010-2542-3_12.
Crutzen, P. J., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106, 1385–1399, https://doi.org/10.1007/BF00881092.
Crutzen, P. J., 1976: The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3, 73–76, https://doi.org/10.1029/GL003i002p00073.
Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211–220, https://doi.org/10.1007/s10584-006-9101-y.
Crutzen, P. J., and P. H. Zimmermann, 1991: The changing photochemistry of the troposphere. Tellus, 43B, 136–151, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00012.x.
Crutzen, P. J., and J. Lelieveld, 2001: Human impacts on atmospheric chemistry. Annu. Rev. Earth Planet. Sci., 29, 17–45, https://doi.org/10.1146/annurev.earth.29.1.17.
Cubasch, U., R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dyn., 13, 757–767, https://doi.org/10.1007/s003820050196.
Damon, P., and J. Jirikowic, 1992: The sun as a low-frequency harmonic oscillator. Radiocarbon, 34, 199–205, https://doi.org/10.1017/S003382220001362X.
Daniel, J. S., and S. Solomon, 1998: On the climate forcing of carbon monoxide. J. Geophys. Res., 103, 13 249–13 260, https://doi.org/10.1029/98JD00822.
de Graaf, M., L. G. Tilstra, P. Wang, and P. Stammes, 2012: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. J. Geophys. Res., 117, D07207, https://doi.org/10.1029/2011JD017160.
de Graaf, M., N. Bellouin, L. G. Tilstra, J. M. Haywood, and P. Stammes, 2014: Aerosol direct radiative effect from episodic smoke emissions over the southeast Atlantic Ocean from 2006 to 2009. Geophys. Res. Lett., 41, 7723–7730, https://doi.org/10.1002/2014GL061103.
DeLand, M. T., and R. P. Cebula, 1998: NOAA 11 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989–1994: 2. Results, validation, and comparisons. J. Geophys. Res., 103, 16 251–16 273, https://doi.org/10.1029/98JD01204.
DeLand, M. T., and R. P. Cebula, 2008: Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res., 113, A11103, https://doi.org/10.1029/2008JA013401.
Delaygue, G., and E. Bard, 2011: An Antarctic view of beryllium-10 and solar activity for the past millennium. Climate Dyn., 36, 2201–2218, https://doi.org/10.1007/s00382-010-0795-1.
Delworth, T. L., V. Ramaswamy, and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature, heat content, and sea level in the 20th century. Geophys. Res. Lett., 32, L24709, https://doi.org/10.1029/2005GL024457.
Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, https://doi.org/10.1175/JCLI3629.1.
Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.
Derwent, R. G., 1990: Trace gases and their relative contribution to the greenhouse effect. Atomic Energy Research Establishment Rep. AERE-R13716, 23 pp.
Deshler, T., 2008: A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos. Res., 90, 223–232, https://doi.org/10.1016/j.atmosres.2008.03.016.
Deshler, T., M. E. Hervig, D. J. Hofmann, J. M. Rosen, and J. B. Liley, 2003: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J. Geophys. Res., 108, 4167, https://doi.org/10.1029/2002JD002514.
Deshler, T., and Coauthors, 2006: Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004. J. Geophys. Res., 111, D01201, https://doi.org/10.1029/2005JD006089.
Despres, V., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, https://doi.org/10.3402/tellusb.v64i0.15598.
Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos., 119, 12 588–12 598, https://doi.org/10.1002/2014JD021712.
Deuzé, J. L., and Coauthors, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106, 4913–4926, https://doi.org/10.1029/2000JD900364.
Dhomse, S., and Coauthors, 2014: Aerosol microphysical simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model. Atmos. Chem. Phys., 14, 11 221–11 246, https://doi.org/10.5194/acp-14-11221-2014.
Dickinson, R. E., and R. J. Cicerone, 1986: Future global warming from atmospheric trace gases. Nature, 319, 109–115, https://doi.org/10.1038/319109a0.
Dickinson, R. E., S. C. Liu, and T. M. Donahue, 1978: Effect of chlorofluoromethane infrared radiation on zonal atmospheric temperatures. J. Atmos. Sci., 35, 2142–2152, https://doi.org/10.1175/1520-0469(1978)035<2142:EOCIRO>2.0.CO;2.
Dines, W. H., 1917: The heat balance of the atmosphere. Quart. J. Roy. Meteor. Soc., 43, 151–158, https://doi.org/10.1002/qj.49704318203.
Dogar, M., G. Stenchikov, S. Osipov, B. Wyman, and M. Zhao, 2017: Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. Atmos., 122, 7922–7948, https://doi.org/10.1002/2017JD026783.
Donner, L. J., and V. Ramanathan, 1980: Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci., 37, 119–124, https://doi.org/10.1175/1520-0469(1980)037<0119:MANOTE>2.0.CO;2.
Dorland, R., F. J. Dentener, and J. Lelieveld, 1997: Radiative forcing due to tropospheric ozone and sulfate aerosols. J. Geophys. Res., 102, 28 079–28 100, https://doi.org/10.1029/97JD02499.
Douglass, D. H., and B. D. Clader, 2002: Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015345.
Doutriaux-Boucher, M., M. Webb, J. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, https://doi.org/10.1029/2008GL036273.
Drayson, S. R., 1966: Atmospheric transmission in the CO2 bands between 12 μ and 18 μ. Appl. Opt., 5, 385–391, https://doi.org/10.1364/AO.5.000385.
Drayson, S. R., 1976: Rapid computation of the Voigt profile. J. Quant. Spectrosc. Radiat. Transfer, 16, 611–614, https://doi.org/10.1016/0022-4073(76)90029-7.
Dubovik, O., and M. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., 105, 20 673–20 696, https://doi.org/10.1029/2000JD900282.