An Approach to Adjusting Climatological Time Series for Discontinuous Inhomogeneities

Thomas R. Karl National Climatic Data Center, National Environmental Satellite Data and Information Service National Oceanic & Atmospheric Administration, Asheville, NC 28801

Search for other papers by Thomas R. Karl in
Current site
Google Scholar
PubMed
Close
and
Claude N. Williams Jr. National Climatic Data Center, National Environmental Satellite Data and Information Service National Oceanic & Atmospheric Administration, Asheville, NC 28801

Search for other papers by Claude N. Williams Jr. in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A method is described whereby climatological time series of temperature and precipitation can be adjusted for station inhomogeneities using station history information. The adjusted data retains its original scale and is not an anomaly series. The methodology uses the concepts of relative homogeneity and standard parametric (temperature) and nonparametric (precipitation) statistics. The technique has been tested in Monte Carlo simulations, and is shown to product climatological time series more consistent with the concept of a homogeneous climate record than would other be the case. Additionally, the technique provides an estimate of the confidence interval associated with each adjustment. It has been applied to over 1200 stations in the United States. In many instances the adjustments in temperature time series are substantial (as large as actual climate fluctuations during the twentieth century) often leading to a more consistent pattern of regional climate change than would otherwise be surmised from inspection of the unadjusted data.

Abstract

A method is described whereby climatological time series of temperature and precipitation can be adjusted for station inhomogeneities using station history information. The adjusted data retains its original scale and is not an anomaly series. The methodology uses the concepts of relative homogeneity and standard parametric (temperature) and nonparametric (precipitation) statistics. The technique has been tested in Monte Carlo simulations, and is shown to product climatological time series more consistent with the concept of a homogeneous climate record than would other be the case. Additionally, the technique provides an estimate of the confidence interval associated with each adjustment. It has been applied to over 1200 stations in the United States. In many instances the adjustments in temperature time series are substantial (as large as actual climate fluctuations during the twentieth century) often leading to a more consistent pattern of regional climate change than would otherwise be surmised from inspection of the unadjusted data.

Save