A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex

Charles A. Doswell III National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Weather Research Program, Boulder, CO 80303

Search for other papers by Charles A. Doswell III in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An idealized model of a vortex interacting with an initially straight frontal zone is developed. The nondivergent vortex flow is a smoothly varying analog to a Rankine Combined Vortex. Local advection and frontogenesis are calculated analytically at the initial time and used to approximate the temporal evolution of the system, during its early phases. Intuition suggests that the maximum deformation of the frontal zone should occur near the radius of maximum winds. Results confirm our intuition, but also provide insight into how frontogenesis proceeds in a real vortex. The calculations yield patterns surprisingly similar to observations of vortex interactions with zones of high gradient on several scales, and seem to explain the compelling similarities between observed vortex phenomena on widely different scales.

Abstract

An idealized model of a vortex interacting with an initially straight frontal zone is developed. The nondivergent vortex flow is a smoothly varying analog to a Rankine Combined Vortex. Local advection and frontogenesis are calculated analytically at the initial time and used to approximate the temporal evolution of the system, during its early phases. Intuition suggests that the maximum deformation of the frontal zone should occur near the radius of maximum winds. Results confirm our intuition, but also provide insight into how frontogenesis proceeds in a real vortex. The calculations yield patterns surprisingly similar to observations of vortex interactions with zones of high gradient on several scales, and seem to explain the compelling similarities between observed vortex phenomena on widely different scales.

Save