A Theory for Strong, Long-Lived Squall Lines

Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
,
Joseph B. Klemp National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Joseph B. Klemp in
Current site
Google Scholar
PubMed
Close
, and
Morris L. Weisman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Morris L. Weisman in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

We study herein the mechanics of long-lived, line-oriented, precipitating cumulus convection (squall lines) using two- and three-dimensional numerical models of moist convection. These models, used in juxtaposition, enable us to address the important theoretical issue of whether a squall line is a system of special, long-lived cells, or whether it is a long-lived system of ordinary, short-lived cells. Our review of the observational literature indicates that the latter is the most consistent paradigm for the vast majority of cases but, on occasion, a squall line may be composed of essentially steady, supercell thunderstorms. The numerical experiments presented herein show that either type of squall line may develop from an initial line-like disturbance depending on the magnitude and orientation of the environmental shear with respect to the line. With shallow shear, oriented perpendicular to the line, a long-lived line evolves containing individually short-lived cells. Our analysis of this type of simulated squall line suggests that the interaction of a storm cell's cold surface. outflow with the low-level shear produces much-deeper and less-inhibited lifting than is possible without the low-level shear, making it easier for new cells to form and grow as old cells decay. Through interecomparsion of two- and three-dimensional squall-line simulations, we conclude that the essential physics of this type of squall line is contained in the two- dimensional framework. We argue that these results describe the physics of both midlatitude and tropical squall lines. Under conditions of deep strong shear at an angle to the supposed line, a line of supercells develops in which their respective three-dimensional circulations do not interfere with one another.

Abstract

We study herein the mechanics of long-lived, line-oriented, precipitating cumulus convection (squall lines) using two- and three-dimensional numerical models of moist convection. These models, used in juxtaposition, enable us to address the important theoretical issue of whether a squall line is a system of special, long-lived cells, or whether it is a long-lived system of ordinary, short-lived cells. Our review of the observational literature indicates that the latter is the most consistent paradigm for the vast majority of cases but, on occasion, a squall line may be composed of essentially steady, supercell thunderstorms. The numerical experiments presented herein show that either type of squall line may develop from an initial line-like disturbance depending on the magnitude and orientation of the environmental shear with respect to the line. With shallow shear, oriented perpendicular to the line, a long-lived line evolves containing individually short-lived cells. Our analysis of this type of simulated squall line suggests that the interaction of a storm cell's cold surface. outflow with the low-level shear produces much-deeper and less-inhibited lifting than is possible without the low-level shear, making it easier for new cells to form and grow as old cells decay. Through interecomparsion of two- and three-dimensional squall-line simulations, we conclude that the essential physics of this type of squall line is contained in the two- dimensional framework. We argue that these results describe the physics of both midlatitude and tropical squall lines. Under conditions of deep strong shear at an angle to the supposed line, a line of supercells develops in which their respective three-dimensional circulations do not interfere with one another.

Save