1. Introduction
In geophysical flows, turbulence (or turbulent mixing) is a primary constituent in the transport of momentum and scalars (active or passive) influenced by velocity shear, stratification, and boundaries. In the atmospheric boundary layer (ABL), turbulent mixing directly impacts small-scale (e.g., air quality and wind energy) and large-scale (e.g., circulation and climate change) processes. In the nighttime as Earth’s surface cools, stable stratification suppresses turbulence as restorative buoyancy and gravitational forces limit vertical fluctuations and transfer turbulent kinetic energy (TKE) to potential energy (PE). The turbulent kinetic energy is a fundamental quantity that is used to define the characteristic velocity scale






























In contrast to the notion of turbulence collapse, numerous field campaigns have measured high mixing rates (e.g., strong turbulence) at strong stability






















One-equation closure continues to see usage in many operational models (see, e.g., Holt and Raman 1988; Cuxart et al. 2006; references therein). A common velocity scale in many models is given by
Recently, a renewed interest in model parameterizations of the SABL has led to new closure methods. Mauritsen et al. (2007) and Wilson (2012) developed one-equation closures with alternative velocity scales based on the total turbulent energy (TTE;
The paper is organized as follows. In section 2, we briefly outline the datasets from field campaigns containing high-quality measurements of stably stratified atmospheric turbulence. We also introduce the LES data from the Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS). In section 3, we first present a discussion on relevant length scales and provide an assessment of the proposed length-scale estimate with the exact mixing length for momentum using observational data (e.g., Holtslag et al. 2013). This assignment reveals the shear-based length scale correlates remarkably well providing a basis for subsequent shear-based parameterization of
2. Description of datasets
a. The SHEBA data
The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment took place from October 1997 to September 1998 in the Beaufort Gyre north of Alaska drifting between approximately 74°N, 144°W and 81°N, 166°W. Full descriptions of the SHEBA campaign, measurement techniques, and data quality can be found in the works of Andreas et al. (1999), Persson et al. (2002), and Uttal et al. (2002). Primary mean and turbulent data were collected on a 20-m tower with five instrumented levels at 2.2, 3.2, 5.1, 8.9, and 18.9 m or 14 m depending on the season. The dataset contains hourly averaged (1 h) measurements. The gradients of mean velocity and potential temperature are calculated using a second-order polynomial fit and respective derivatives at the individual measurement levels (see, e.g., Grachev et al. 2005). The data from first level, 2.2 m, is excluded from our analysis because of prominent surface interactions with drifting snow leading to significant scatter (Sorbjan and Grachev 2010). Bin averaging is performed using
b. The CASES-99 data
The 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99) was a large collaborative field campaign lasting from 1 to 31 October 1999 in southeastern Kansas, located at approximately 38°N latitude (Poulos et al. 2002). Data were collected on a 60-m main tower with sonic anemometers at six levels and 34 thermocouples. Wind speeds were measured at 1, 5, 20, 30, 40, 45, and 50 m while temperatures were measured at 1, 5, 15, 25, 35, 45, and 55 m. The gradients of mean velocity and potential temperature are calculated using a sixth-order polynomial fit and respective derivatives at the individual measurement levels (Sorbjan and Grachev 2010). The original dataset of 5-min-averaged measurements is transformed to hourly averages (1 h) and bin-averaged based on
c. The GABLS LES data
The first GABLS initiative provided an intercomparison of LES (Beare et al. 2006) and single-column models (Cuxart et al. 2006) with an eye toward mixing-length specification for numerical weather prediction (NWP) and climate models (e.g., Holtslag et al. 2013). The LES study presents insights on the behavior of the SABL dynamics based on the simulations of Kosović and Curry (2000). We selected the 2.0-m-resolution LES reference dataset conducted by the National Center for Atmospheric Research (NCAR) for analysis. The LES is based on the subgrid-scale eddy viscosity model of Sullivan et al. (1994), which adheres to MO similarity theory in the surface layer region. For analysis, the turbulent quantities are determined from the summation of the resolved and SGS contributions (total = resolved + SGS).
3. Theoretical formulation
a. Relevant length scales








In seeking a unified view of turbulent mixing in the SABL, pertinent length scales can be expressed locally for unforced (e.g., decaying), shear-dominated, or buoyancy-dominated turbulence. This approach is not meant to discount the contributions of MO or local similarity theories but rather to focus on fundamental aspects of stably stratified turbulence from which we can develop model parameterizations. For unforced or decaying turbulence, the pertinent length scale is given by




















Comparison of estimated and actual turbulent mixing lengths for momentum: (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

Comparison of estimated and actual turbulent mixing lengths for momentum: (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Comparison of estimated and actual turbulent mixing lengths for momentum: (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1











b. Definition of constants











Numerous experimental studies of unstratified turbulent wall-bounded flows dating back to the 1970s suggested a constant value of
















An evaluation
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

An evaluation
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
An evaluation
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1








In Fig. 3, we evaluate

The quantity c as a function of the shear-production Reynolds number
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

The quantity c as a function of the shear-production Reynolds number
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
The quantity c as a function of the shear-production Reynolds number
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
c. Eddy diffusivity for momentum















In Fig. 4 we evaluate the estimated and actual eddy diffusivity for momentum for the SHEBA and CASES-99 datasets. The quantity

Comparison of estimated and actual eddy diffusivity for momentum (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

Comparison of estimated and actual eddy diffusivity for momentum (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Comparison of estimated and actual eddy diffusivity for momentum (a)
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1






d. The turbulent Prandtl number
One possible avenue toward solving for the eddy diffusivity for heat is the link provided by the turbulent Prandtl number,
Considering stably stratified flow conditions relevant to this study, results from DNS studies (e.g., Gerz et al. 1989; Holt et al. 1992; Shih et al. 2000), laboratory experiments (e.g., Rohr et al. 1988; Strang and Fernando 2001), analytical models (e.g., Schumann and Gerz 1995; Zilitinkevich et al. 2007; Venayagamoorthy and Stretch 2010), and atmospheric observations (e.g., Webster 1964; Kondo et al. 1978; Kim and Mahrt 1992) show a strong connection between












Evaluation of the actual
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

Evaluation of the actual
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Evaluation of the actual
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
e. Eddy diffusivity for heat
We can predict the diffusivity of heat from

Comparison of the estimated and actual eddy diffusivity defined as the ratio of (a) actual eddy diffusivity for momentum to the turbulent Prandtl number,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

Comparison of the estimated and actual eddy diffusivity defined as the ratio of (a) actual eddy diffusivity for momentum to the turbulent Prandtl number,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Comparison of the estimated and actual eddy diffusivity defined as the ratio of (a) actual eddy diffusivity for momentum to the turbulent Prandtl number,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Using the shear-based parameterization

Comparison of the estimated and actual eddy diffusivity defined as the ratio of estimated eddy diffusivity for momentum from Fig. 4 to the turbulent Prandtl number formula of VS10,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

Comparison of the estimated and actual eddy diffusivity defined as the ratio of estimated eddy diffusivity for momentum from Fig. 4 to the turbulent Prandtl number formula of VS10,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
Comparison of the estimated and actual eddy diffusivity defined as the ratio of estimated eddy diffusivity for momentum from Fig. 4 to the turbulent Prandtl number formula of VS10,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
4. A priori analysis of the SABL vertical profile
Field campaigns, such as SHEBA and CASES-99, provide measurements from fixed meteorological towers and are limited to the lower portion of the ABL. Measuring beyond this region leads to many difficulties in precise measurement techniques. LES data provides additional information on upper-SABL vertical structure, which we can use to further evaluate the proposed shear-based parameterizations.
a. Revisit of model constants
The SHEBA and CASES-99 datasets clearly indicate that the stress intensity ratio is well described by the modified stability function in Eq. (14) (Fig. 2). We revisit

The quantity
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

The quantity
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
The quantity
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
b. Eddy diffusivity for momentum



















Figure 9a shows a comparison of the estimates with the actual eddy diffusivity for momentum as functions of nondimensionalized height

A priori analysis of NCAR 2.0-m-resolution LES data for (a) comparison of actual eddy diffusivity for momentum with estimates for eddy diffusivity for momentum as functions of nondimensionalized height using the proposed parameterization,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1

A priori analysis of NCAR 2.0-m-resolution LES data for (a) comparison of actual eddy diffusivity for momentum with estimates for eddy diffusivity for momentum as functions of nondimensionalized height using the proposed parameterization,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
A priori analysis of NCAR 2.0-m-resolution LES data for (a) comparison of actual eddy diffusivity for momentum with estimates for eddy diffusivity for momentum as functions of nondimensionalized height using the proposed parameterization,
Citation: Journal of the Atmospheric Sciences 72, 5; 10.1175/JAS-D-14-0241.1
c. Eddy diffusivity for heat
In section 3, we observed that the
5. Conclusions
In this research, we sought to characterize the active turbulent eddies with pertinent length scales using local (or z-less) formulations. Using datasets from the SHEBA and CASES-99 field campaigns, two length-scale estimates,
We observed that the ratio of the shear-based parameters for turbulent mixing and exact Reynolds-averaged quantities corresponds to the stress intensity ratio,
From this assessment of length scales and model constants, we proposed a shear-based parameterization for the eddy diffusivity for momentum,
These turbulence parameterizations are further evaluated with an a priori analysis of the GABLS LES intercomparison data for the SABL vertical structure. While the LES data exhibit only moderately stable stratification, it is worth noting that the shear-based parameterization
Continuing the trajectory of this current work, a natural extension is to implement the proposed turbulence parameters in an operational model for the stable atmospheric boundary layer within the larger context of turbulence modeling in NWP, global circulation, and climate models (e.g., Holtslag et al. 2013).
Acknowledgments
We thank the three referees for their helpful comments and recommendations. We would like to acknowledge financial support of the National Science Foundation under Grant OCE-1151838. The authors also gratefully acknowledge the SHEBA Atmospheric Surface Flux Group and the individuals and institutions of the CASES-99 initiative for their skillful collection and analysis of the valuable SABL datasets. We also thank the organizers of the GABLS LES Intercomparison and Dr. Peter Sullivan for providing access to the detailed postprocessed data.
REFERENCES
André, J. C., G. De Moor, P. Lacarrère, G. Therry, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35, 1861–1883, doi:10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.
Andreas, E. I., C. W. Fairall, P. S. Guest, and P. O. G. Persson, 1999: An overview of the SHEBA atmospheric surface flux program. Preprints, 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 550–555.
Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89–116, doi:10.1007/s10546-014-9941-3.
Apsley, D. D., and I. P. Castro, 1997: A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Bound.-Layer Meteor., 83, 75–98, doi:10.1023/A:1000252210512.
Armenio, V., and S. Sakar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 1–42, doi:10.1017/S0022112002007851.
Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics on Kansas during CASES-99. Bound.-Layer Meteor., 105, 221–252, doi:10.1023/A:1019992330866.
Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247–272, doi:10.1007/s10546-004-2820-6.
Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Academy of Arts and Sciences, 287–304.
Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchanges in a neutral atmosphere. J. Geophys. Res., 67, 3095–3102, doi:10.1029/JZ067i008p03095.
Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 1427–1440, doi:10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Canuto, V. M., Y. Cheng, A. M. Howard, and I. N. Esau, 2008: Stably stratified flows: A model with no Ri(cr). J. Atmos. Sci., 65, 2437–2447, doi:10.1175/2007JAS2470.1.
Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 1550–1565, doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.
Corrsin, A., 1958: Local isotropy in turbulent shear flow. NACA Research Memo. 58B11, 15 pp. [Available online at http://naca.central.cranfield.ac.uk/reports/1958/naca-rm-58b11.pdf.]
Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273–303, doi:10.1007/s10546-005-3780-1.
Deardorff, J. W., 1976: Clear and cloud-capped mixed layers—Their numerical simulation, structure and growth and parameterizations. Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, European Centre for Medium Range Weather Forecasts, 234–284.
Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 100, 351–364, doi:10.1002/qj.49710042507.
Derbyshire, H., 1994: A balanced approach to stable boundary layer dynamics. J. Atmos. Sci., 51, 3486–3504, doi:10.1175/1520-0469(1994)051<3486:AATSBL>2.0.CO;2.
Detering, H. W., and D. Etling, 1985: Application of the E-ε turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33, 113–133, doi:10.1007/BF00123386.
Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210–213, doi:10.1016/0021-9169(61)90116-7.
Driedonks, A. G. M., H. van Dop, and W. H. Kohsiek, 1978: Meteorological observations on the 213 m mast at Cabauw in the Netherlands. Preprints, Fourth Symp. on Meteorological Observations and Instrumentation, Denver, CO, Amer. Meteor. Soc., 41–46.
Duynkerke, P. G., and G. M. Driedonks, 1987: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J. Atmos. Sci., 44, 43–64, doi:10.1175/1520-0469(1987)044<0043:AMFTTS>2.0.CO;2.
Galperin, B., A. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 65–69, doi:10.1002/asl.153.
Garratt, J. R., 1982: Observations in the nocturnal boundary layer. Bound.-Layer Meteor., 22, 21–48, doi:10.1007/BF00128054.
Gerz, T., U. Schumann, and S. E. Elghobashi, 1989: Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200, 563–594, doi:10.1017/S0022112089000765.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201–235, doi:10.1007/s10546-004-2729-0.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 51–82, doi:10.1007/s10546-012-9771-0.
Grisogono, B., and D. Belušić, 2008: Improving mixing length-scale for stable boundary layers. Quart. J. Roy. Meteor. Soc., 134, 2185–2192, doi:10.1002/qj.347.
Holt, S. E., J. R. Koseff, and J. H. Ferziger, 1992: A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237, 499–539, doi:10.1017/S0022112092003513.
Holt, T., and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761–780, doi:10.1029/RG026i004p00761.
Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 1691–1706, doi:10.1175/BAMS-D-11-00187.1.
Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509–512, doi:10.1017/S0022112061000317.
Hoyas, S., and J. Jiménez, 2006: Scaling of the velocity fluctuations in turbulent channels up to . Phys. Fluids, 18, 011702, doi:10.1063/1.2162185.
Huang, J., E. Bou-Zeid, and J.-C. Golaz, 2013: Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part II: A novel mixing-length model. J. Atmos. Sci., 70, 1528–1542, doi:10.1175/JAS-D-12-0168.1.
Hunt, J. S. R., J. C. Kaimal, and J. E. Gaynor, 1985: Some observations of turbulence structure in stable layers. Quart. J. Roy. Meteor. Soc., 111, 793–815, doi:10.1002/qj.49711146908.
Itsweire, E. C., J. R. Koseff, D. A. Briggs, and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 1508–1522, doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2.
Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.
Karimpour, F., and S. K. Venayagamoorthy, 2014: A revisit of the equilibrium assumption for predicting near-wall turbulence. J. Fluid Mech., 760, 304–312, doi:10.1017/jfm.2014.532.
Kays, W. M., and M. E. Crawford, 1993: Convective Heat and Mass Transfer. McGraw-Hill, 480 pp.
Kim, J., and L. Mahrt, 1992: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus, 44A, 381–394, doi:10.1034/j.1600-0870.1992.t01-4-00003.x.
Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 1012–1021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.
Kosović, B., and J. A. Curry, 2000: A large eddy simulation of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 1052–1068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.
Launder, B. E., and D. B. Spalding, 1972: Mathematical Models of Turbulence. Academic Press, 169 pp.
Launder, B. E., and D. B. Spalding, 1974: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269–289, doi:10.1016/0045-7825(74)90029-2.
Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263–279, doi:10.1007/s001620050093.
Mahrt, L., 2007: Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ. Fluid Mech., 7, 331–334, doi:10.1007/s10652-007-9024-9.
Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 19–39, doi:10.1007/s10546-005-9017-5.
Marušic, I., and A. E. Perry, 1995: A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech., 298, 389–407, doi:10.1017/S0022112095003363.
Mauritsen, T., G. Svensson, S. S. Zilitinkevich, I. Esau, L. Enger, and B. Grisogono, 2007: A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci., 64, 4113–4126, doi:10.1175/2007JAS2294.1.
Mellor, G. L., and P. A. Durbin, 1975: The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718–728, doi:10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2.
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851–875, doi:10.1029/RG020i004p00851.
Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508, doi:10.1017/S0022112061000305.
Monin, A. S., and A. M. F. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187.
Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349–378, doi:10.1023/A:1018915827400.
Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 2202–2216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.
Obukhov, A. M., 1946: Turbulence in an atmosphere with a non-uniform temperature. Tr. Inst. Theor. Geofiz., 1, 95–115.
Ohya, Y., R. Nakamuram, and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound.-Layer Meteor., 126, 349–363, doi:10.1007/s10546-007-9245-y.
Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 1, 493–497.
Pahlow, M., M. Parlange, and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225–248, doi:10.1023/A:1018909000098.
Persson, P. O., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.
Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.
Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83,555–581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.
Prandtl, L., 1925: Bericht über die entstehung der turbulenz. Z. Angew. Math. Mech., 5, 136–139.
Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354–373, doi:10.1098/rspa.1920.0039.
Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77–111, doi:10.1017/S0022112088002332.
Schumann, U., and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34, 33–48, doi:10.1175/1520-0450-34.1.33.
Shah, S., and E. Bou-Zeid, 2014: Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Bound.-Layer Meteor., 153, 355–387, doi:10.1007/s10546-014-9950-2.
Shih, L. H., J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, 2000: Scaling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech., 412, 1–20, doi:10.1017/S0022112000008405.
Sorbjan, Z., and B. B. Balsley, 2008: Microstructure of turbulence in the stably stratified boundary layer. Bound.-Layer Meteor., 129, 191–210, doi:10.1007/s10546-008-9310-1.
Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux–gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385–405, doi:10.1007/s10546-010-9482-3.
Strang, E. J., and H. J. S. Fernando, 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 2026–2048, doi:10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.
Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247–276, doi:10.1007/BF00713741.
Taylor, G. I., 1931: Effects of variation in density on the stability of superimposed streams of fluid. Proc. Roy. Soc. London,132A, 499–523, doi:10.1098/rspa.1931.0115.
Townsend, A. A., 1958: The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech., 3, 361–372, doi:10.1017/S0022112058000045.
Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.
Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.
Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255–275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.
Venayagamoorthy, S. K., and D. D. Stretch, 2010: On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359–369, doi:10.1017/S002211200999293X.
Viterbo, P., A. C. M. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 2401–2426, doi:10.1002/qj.49712555904.
Webster, C. A. G., 1964: An experimental study of turbulence in a density-stratified shear flow. J. Fluid Mech., 19, 221–245, doi:10.1017/S0022112064000672.
Weng, W., and P. Taylor, 2003: On modelling the one-dimensional atmospheric boundary layer. Bound.-Layer Meteor., 107, 371–400, doi:10.1023/A:1022126511654.
Wilson, J. D., 2012: An alternative eddy-viscosity model for the horizontally uniform atmospheric boundary layer. Bound.-Layer Meteor., 145, 165–184, doi:10.1007/s10546-011-9650-0.
Woods, J. D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci., 4, 1289–1298, doi:10.1029/RS004i012p01289.
Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141–145, doi:10.1007/BF02033914.
Zilitinkevich, S. S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389–409, doi:10.1023/A:1020376832738.
Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167–191, doi:10.1007/s10546-007-9189-2.
Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793–799, doi:10.1002/qj.264.