Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226–229, doi:10.1126/science.262.5131.226.
Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017, doi:10.1038/nature03174.
Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: Review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54, 1004–1012, doi:10.1175/1520-0477(1973)054<1004:AROMCC>2.0.CO;2.
Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi:10.1126/science.245.4923.1227.
Allen, R. J., and S. C. Sherwood, 2010: Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys. Res. Lett., 37, L07702, doi:10.1029/2010GL042759.
Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 38–60, doi:10.1016/j.atmosres.2014.01.009.
Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342, doi:10.1126/science.1092779.
Baker, M. B., and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142–145, doi:10.1038/345142a0.
Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation—Polydisperse ice nuclei. Atmos. Chem. Phys., 9, 5933–5948, doi:10.5194/acp-9-5933-2009.
Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623.
Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, doi:10.1029/2009GL040915.
Berg, L. K., M. Shrivastava, R. C. Easter, J. D. Fast, E. G. Chapman, Y. Liu, and R. A. Ferrare, 2015: A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli. Geosci. Model Dev., 8, 409–429, doi:10.5194/gmd-8-409-2015.
Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, 156–178.
Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505, doi:10.1126/science.1204994.
Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2013: Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols. Geophys. Res. Lett., 40, 3715–3720, doi:10.1002/grl.50719.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552, doi:10.1002/jgrd.50171.
Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, doi:10.1038/nature10946.
Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 571–658.
Carrió, G. G., H. Jiang, and W. R. Cotron, 2005: Impact of aerosol intrusions on Arctic boundary layer clouds. Part II: Sea ice melting rates. J. Atmos. Sci., 62, 3094–3105, doi:10.1175/JAS3558.1.
Carrió, G. G., W. R. Cotton, and A. M. Loftus, 2014: On the response of hailstorms to enhanced CCN concentrations. Atmos. Res., 143, 342–350, doi:10.1016/j.atmosres.2014.03.002.
Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71, doi:10.1038/nature12674.
Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, doi:10.1029/2010JD014158.
Chen, S.-H., and Coauthors, 2015: Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 141, 2563–2570, doi:10.1002/qj.2542.
Chen, Y.-C., M. W. Christensen, L. Xue, A. Sorooshian, G. L. Stephens, R. M. Rasmussen, and J. H. Seinfeld, 2012: Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys., 12, 8223–8235, doi:10.5194/acp-12-8223-2012.
Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643–646, doi:10.1038/ngeo2214.
Chen, Y.-C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 2819–2833, doi:10.1002/2014JD022736.
Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, doi:10.1029/2010JD014638.
Christensen, M. W., and G. L. Stephens, 2012: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res., 117, D11203, doi:10.1029/2011JD017125.
Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–1022, doi:10.1126/science.237.4818.1020.
Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 1909–1922, doi:10.1175/JAMC-D-12-0230.1.
Connolly, P. J., T. W. Choularton, M. W. Gallagher, K. N. Bower, M. J. Flynn, and J. A. Whiteway, 2006: Cloud-resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol–cloud interactions. Quart. J. Roy. Meteor. Soc., 132, 3079–3106, doi:10.1256/qj.05.86.
Connolly, P. J., O. Mohler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 2805–2824, doi:10.5194/acp-9-2805-2009.
Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29, doi:10.1007/s00703-001-0584-9.
Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293–306, doi:10.6057/2012TCRR03.05.
Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 1572–1578, doi:10.1126/science.1227279.
Curry, J. A., 1986: Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 90–106, doi:10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2.
Curry, J. A., P. V. Hobbs, M. D. King, D. A. Randall, and P. Minnis, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 5–29, doi:10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2.
Cziczo, D. J., and Coauthors, 2004: Observations of organic species and atmospheric ice formation. Geophys. Res. Lett., 31, L12116, doi:10.1029/2004GL019822.
Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320–1324, doi:10.1126/science.1234145.
de Boer, G., T. Hashino, G. J. Tripoli, and E. W. Eloranta, 2013: A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase. Atmos. Chem. Phys., 13, 1733–1749, doi:10.5194/acp-13-1733-2013.
DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 217–11 222, doi:10.1073/pnas.0910818107.
Diao, M., M. A. Zondlo, A. J. Heymsfield, S. P. Beaton, and D. C. Rogers, 2013: Evolution of ice crystal regions on the microscale based on in situ observations. Geophys. Res. Lett., 40, 3473–3478, doi:10.1002/grl.50665.
Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353–365, doi:10.1175/BAMS-85-3-353.
Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., L20814, doi:10.1029/2005GL024175.
Earle, M. E., P. S. K. Liu, J. W. Strapp, A. Zelenyuk, D. Imre, G. M. McFarquhar, N. C. Shantz, and W. R. Leaitch, 2011: Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: Insight from observations of aerosol and clouds during ISDAC. J. Geophys. Res., 116, D00T09, doi:10.1029/2011jd015887.
Ekman, A. M. L., 2014: Do sophisticated parameterizations of aerosol-cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J. Geophys. Res. Atmos., 119, 817–832, doi:10.1002/2013JD020511.
Ekman, A. M. L., A. Engstrom, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133, 1439–1452, doi:10.1002/qj.108.
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219–12 224, doi:10.1073/pnas.1301293110.
Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.
Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010a: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, doi:10.1088/1748-9326/5/4/044005.
Fan, J., J. M. Comstock, M. Ovchinnikov, S. A. McFarlane, G. McFarquhar, and G. Allen, 2010b: Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations. J. Geophys. Res., 115, D00K33, doi:10.1029/2010JD014650.
Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. J. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, doi:10.1029/2010JD015375.
Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012a: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, doi:10.1029/2011JD016537.
Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012b: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.
Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581–E4590, doi:10.1073/pnas.1316830110.
Fan, J., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81–101, doi:10.5194/acp-14-81-2014.
Fan, J., and Coauthors, 2015a: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 3485–3509, doi:10.1002/2014JD022142.
Fan, J., D. Rosenfeld, Y. Yang, C. Zhao, L. R. Leung, and Z. Li, 2015b: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys. Res. Lett., 42, 6066–6075, doi:10.1002/2015GL064479.
Fan, S. M., 2013: Modeling of observed mineral dust aerosols in the Arctic and the impact on winter season low-level clouds. J. Geophys. Res. Atmos., 118, 11 161–11 174, doi:10.1002/jgrd.50842.
Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849–852, doi:10.1038/nature09314.
Feingold, G., I. Koren, T. Yamaguchi, and J. Kazil, 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 7351–7367, doi:10.5194/acp-15-7351-2015.
Field, P. R., and Coauthors, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 1066–1079, doi:10.1175/JAS-D-11-026.1.
Findeisen, W., 1938: Kolloid‐meteorologische Vorgange bei Neiderschlagsbildung. Meteor. Z., 55, 121–133.
Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.
Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon, 2012: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res., 117, D13209, doi:10.1029/2012JD017508.
García-García, F., and R. List, 1992: Laboratory measurements and parameterizations of supercooled water skin temperatures and bulk properties of gyrating hailstones. J. Atmos. Sci., 49, 2058–2073, doi:10.1175/1520-0469(1992)049<2058:LMAPOS>2.0.CO;2.
Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789, doi:10.1038/nature04636.
Garrett, T. J., M. M. Maestas, S. K. Krueger, and C. T. Schmidt, 2009: Acceleration by aerosol of a radiative-thermodynamic cloud feedback influencing Arctic surface warming. Geophys. Res. Lett., 36, L19804, doi:10.1029/2009GL040195.
Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53, 1649–1662, doi:10.1175/1520-0469(1996)053<1649:MOMSCW>2.0.CO;2.
Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 1268–1287, doi:10.1175/JCLI-D-14-00102.1.
Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950.
Goren, T., and D. Rosenfeld, 2012: Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J. Geophys. Res., 117, D17206, doi:10.1029/2012JD017981.
Goren, T., and D. Rosenfeld, 2014: Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components in marine stratocumulus. Atmos. Res., 138, 378–393, doi:10.1016/j.atmosres.2013.12.008.
Goren, T., and D. Rosenfeld, 2015: Extensive closed cell marine stratocumulus downwind of Europe—A large aerosol cloud mediated radiative effect or forcing? J. Geophys. Res. Atmos., 120, 6098–6116, doi:10.1002/2015JD023176.
Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 4493–4499, doi:10.1175/JAS-D-14-0231.1.
Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 2446–2464, doi:10.1175/JAS-D-14-0307.1.
Grabowski, W. W., and H. Morrison, 2011: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. Part II: Double-moment microphysics. J. Climate, 24, 1897–1912, doi:10.1175/2010JCLI3647.1.
Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250, doi:10.5194/acp-14-5233-2014.
Gryspeerdt, E., P. Stier, and D. G. Partridge, 2014: Satellite observations of cloud regime development: The role of aerosol processes. Atmos. Chem. Phys., 14, 1141–1158, doi:10.5194/acp-14-1141-2014.
Gu, Y., K. N. Liou, Y. Xue, C. R. Mechoso, W. Li, and Y. Luo, 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, doi:10.1029/2005JD006312.
Guo, J., M. Deng, J. Fan, Z. Li, Q. Chen, P. Zhai, Z. Dai, and X. Li, 2014: Precipitation and air pollution at mountain and plain stations in northern China: Insights gained from observations and modeling. J. Geophys. Res. Atmos., 119, 4793–4807, doi:10.1002/2013JD021161.
Gustafson, W. I., L. K. Berg, R. C. Easter, and S. J. Ghan, 2008: The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: Tracer transport results. Environ. Res. Lett., 3, 025005, doi:10.1088/1748-9326/3/2/025005.
Haag, W., B. Karcher, J. Strom, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 1791–1806, doi:10.5194/acp-3-1791-2003.
Hack, J. J., and J. A. Pedretti, 2000: Assessment of solution uncertainties in single-column modeling frameworks. J. Climate, 13, 352–365, doi:10.1175/1520-0442(2000)013<0352:AOSUIS>2.0.CO;2.
Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during riming process. Bull. Amer. Meteor. Soc., 55, 679–679.
Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 45–75, doi:10.1016/S0169-8095(98)00098-2.
Hazra, A., P. Mukhopadhyay, S. Taraphdar, J. P. Chen, and W. R. Cotton, 2013: Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res. Atmos., 118, 7157–7168, doi:10.1002/jgrd.50546.
Herbener, S. R., S. C. van den Heever, G. G. Carrió, S. M. Saleeby, and W. R. Cotton, 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 2040–2055, doi:10.1175/JAS-D-13-0202.1.
Hill, A. A., G. Feingold, and H. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 1450–1464, doi:10.1175/2008JAS2909.1.
Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 2489–2518, doi:10.5194/acp-15-2489-2015.
Hogan, R. J., M. D. Behera, E. J. O’Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106, doi:10.1029/2003GL018977.
Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854, doi:10.5194/acp-12-9817-2012.
Houze, R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 994–1021, doi:10.1002/2015RG000488.
Hu, N., and X. Liu, 2013: A modeling study of the effect of anthropogenic aerosols on drought in the late spring of south China. Acta Meteor. Sin., 27, 701–715, doi:10.1007/s13351-013-0506-z.
Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the east Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.
Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.
Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21 361–21 375, doi:10.1029/95JD03575.
Jiang, H., Y. Yin, L. Yang, S. Z. Yang, H. Su, and K. Chen, 2014: The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan Mountains in Southeast China. Adv. Atmos. Sci., 31, 396–406, doi:10.1007/s00376-013-3048-5.
Jiang, H., Y. Yin, H. Su, Y. P. Shan, and R. J. Gao, 2015: The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber. Atmos. Res., 153, 200–208, doi:10.1016/j.atmosres.2014.08.015.
Jiang, H. L., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 2105–2117, doi:10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.
Jiang, Y. Q., X. H. Liu, X. Q. Yang, and M. H. Wang, 2013: A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ., 70, 51–63, doi:10.1016/j.atmosenv.2012.12.039.
Kar, S. K., Y. A. Liou, and K. J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 80–87, doi:10.1016/j.atmosres.2008.09.004.
Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111, D01205, doi:10.1029/2005JD006219.
Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 3102–3136, doi:10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.
Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11 207–11 212, doi:10.1073/pnas.0505191102.
Kazil, J., G. Feingold, H. Wang, and T. Yamaguchi, 2014: On the interaction between marine boundary layer cellular cloudiness and surface heat fluxes. Atmos. Chem. Phys., 14, 61–79, doi:10.5194/acp-14-61-2014.
Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.
Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663, doi:10.1256/qj.04.62.
Khain, A. P., N. Cohen, B. Lynn, and A. Pokrovsky, 2008a: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 3652–3677, doi:10.1175/2008JAS2678.1.
Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008b: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721–1748, doi:10.1175/2007JAS2515.1.
Khain, A. P., L. R. Leung, B. Lynn, and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114, D22203, doi:10.1029/2009JD011902.
Khain, A. P., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365–384, doi:10.1175/2009JAS3210.1.
Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129–146, doi:10.1016/j.atmosres.2010.09.015.
Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247–322, doi:10.1002/2014RG000468.
Khain, A. P., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res., 167, 129–145, doi:10.1016/j.atmosres.2015.07.014.
Khairoutdinov, M. F., and C.-E. Yang, 2013: Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature. Atmos. Chem. Phys., 13, 4133–4144, doi:10.5194/acp-13-4133-2013.
Koch, D., and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 7685–7696, doi:10.5194/acp-10-7685-2010.
Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614, doi:10.1038/35020537.
Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. Davidi, 2010: Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys., 10, 5001–5010, doi:10.5194/acp-10-5001-2010.
Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. Heiblum, 2012: Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci., 5, 118–122, doi:10.1038/ngeo1364.
Koren, I., G. Dagan, and O. Altaratz, 2014: From aerosol-limited to invigoration of warm convective clouds. Science, 344, 1143–1146, doi:10.1126/science.1252595.
Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 3372–3375, doi:10.1175/JAS4035.1.
Korolev, A., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 2957–2974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.
Kulkarni, G., J. Fan, J. M. Comstock, X. Liu, and M. Ovchinnikov, 2012: Laboratory measurements and model sensitivity studies of dust deposition ice nucleation. Atmos. Chem. Phys., 12, 7295–7308, doi:10.5194/acp-12-7295-2012.
Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 3471–3490, doi:10.1175/JAS-D-12-067.1.
Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 1820–1843, doi:10.1175/JAMC-D-13-0354.1.
Lance, S., and Coauthors, 2011: Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds. Atmos. Chem. Phys., 11, 8003–8015, doi:10.5194/acp-11-8003-2011.
Larson, V. E., A. J. Smith, M. J. Falk, K. E. Kotenberg, and J.-C. Golaz, 2006: What determines altocumulus dissipation time? J. Geophys. Res., 111, D19207, doi:10.1029/2005JD007002.
Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi:10.1029/2006GL027546.
Lau, K.-M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864, doi:10.1007/s00382-006-0114-z.
Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 2429–2445, doi:10.1175/JAS-D-14-0274.1.
Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 5407–5429, doi:10.5194/acp-11-5407-2011.
Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 991–1009, doi:10.1175/MWR-D-13-00156.1.
Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 9941–9964, doi:10.5194/acp-12-9941-2012.
L’Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.
Lee, S. S., 2012: Effect of aerosol on circulations and precipitation in deep convective clouds. J. Atmos. Sci., 69, 1957–1974, doi:10.1175/JAS-D-11-0111.1.
Lee, S. S., W.-K. Tao, and C.-H. Jung, 2014: Aerosol effects on instability, circulations, clouds, and precipitation. Adv. Meteor., 2014, 683950, doi:10.1155/2014/683950.
Lerach, D. G., B. J. Gaudet, and W. R. Cotton, 2008: Idealized simulations of aerosol influences on tornadogenesis. Geophys. Res. Lett., 35, L23806, doi:10.1029/2008GL035617.
Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2008a: Increased winter precipitation over the North Pacific from 1984–1994 to 1995–2005 inferred from the Global Precipitation Climatology Project. Geophys. Res. Lett., 35, L13821, doi:10.1029/2008GL034668.
Li, G., Y. Wang, and R. Zhang, 2008b: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res., 113, D15211, doi:10.1029/2007JD009361.
Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2009: Impacts of aerosols on the development and precipitation of a mesoscale squall line. J. Geophys. Res., 114, D17205, doi:10.1029/2008JD011581.
Li, R., and Q.-L. Min, 2010: Impacts of mineral dust on the vertical structure of precipitation. J. Geophys. Res., 115, D09203, doi:10.1029/2009JD011925.
Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci., 66, 3–21, doi:10.1175/2008JAS2646.1.
Li, Z., and Coauthors, 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys., 27, 2755–2770, doi:10.5194/angeo-27-2755-2009.
Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888–894, doi:10.1038/ngeo1313.
Lim, K.-S. S., and Coauthors, 2014: Investigation of aerosol indirect effects using a cumulus microphysics parameterization in a regional climate model. J. Geophys. Res. Atmos., 119, 906–926, doi:10.1002/2013JD020958.
Liu, X., J. E. Penner, and M. Herzog, 2005: Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res., 110, D18206, doi:10.1029/2004JD005674.
Liu, X., J. E. Penner, and M. Wang, 2009: Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. J. Geophys. Res., 114, D03204, doi:10.1029/2008JD010492.
Liu, X., X. Shi, K. Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson, 2012: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmos. Chem. Phys., 12, 12 061–12 079, doi:10.5194/acp-12-12061-2012.
Liu, Y., J. R. Sun, and B. Yang, 2009: The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus, 61B, 642–656, doi:10.1111/j.1600-0889.2009.00427.x.
Loftus, A. M., and W. R. Cotton, 2014: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmos. Res., 150, 97–128, doi:10.1016/j.atmosres.2014.07.016.
Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 35–57, doi:10.1016/j.atmosres.2014.05.013.
Lohmann, U., J. Zhang, and J. Pi, 2003: Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic. J. Geophys. Res., 108, 4341, doi:10.1029/2003JD003377.
Lohmann, U., J. Quaas, S. Kinne, and J. Feichter, 2007: Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. Bull. Amer. Meteor. Soc., 88, 243–249, doi:10.1175/BAMS-88-2-243.
Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453–456, doi:10.1038/nature04449.
Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecasting, 27, 1470–1488, doi:10.1175/WAF-D-11-00144.1.
Lynn, B. H., and Coauthors, 2016: The sensitivity of Hurricane Irene to aerosols and ocean coupling: simulations with WRF spectral bin microphysics. J. Atmos. Sci., 73, 467–486, doi:10.1175/JAS-D-14-0150.1.
Mace, G. G., M. Deng, B. Soden, and E. Zipser, 2006: Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories. J. Atmos. Sci., 63, 480–503, doi:10.1175/JAS3627.1.
Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 2032–2050, doi:10.1175/JAS-D-12-0264.1.
Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253, doi:10.1126/science.1075159.
Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 3114–3136, doi:10.1175/JAS3816.1.
Min, M., and Z. Zhang, 2014: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 142, 25–36, doi:10.1016/j.jqsrt.2014.03.014.
Min, Q.-L., R. Li, B. Lin, E. Joseph, S. Wang, Y. Hu, V. Morris, and F. Chang, 2009: Evidence of mineral dust altering cloud microphysics and precipitation. Atmos. Chem. Phys., 9, 3223–3231, doi:10.5194/acp-9-3223-2009.
Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 5125–5133, doi:10.1175/2011JCLI4108.1.
Mitchell, D. L., P. Rasch, D. Ivanova, G. McFarquhar, and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.
Mitra, S. K., U. Barth, and H. R. Pruppacher, 1990: A laboratory study of the efficiency with which aerosol-particles are scavenged by snow flakes. Atmos. Environ., 24A, 1247–1254, doi:10.1016/0960-1686(90)90089-6.
Mitra, S. K., J. Brinkmann, and H. R. Pruppacher, 1992: A wind-tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23, 245–256, doi:10.1016/0021-8502(92)90326-Q.
Morrison, H., 2012: On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys., 12, 7689–7705, doi:10.5194/acp-12-7689-2012.
Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 503–10 523, doi:10.5194/acp-11-10503-2011.
Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2011: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 11–17, doi:10.1038/ngeo1332.
Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312–339, doi:10.1175/JAS-D-14-0066.1.
Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 6519–6554, doi:10.1039/c2cs35200a.
Nabat, P., S. Somot, M. Mallet, F. Sevault, M. Chiacchio, and M. Wild, 2015: Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Climate Dyn., 44, 1127–1155, doi:10.1007/s00382-014-2205-6.
Naccarato, K. P., O. Pinto Jr., and I. R. C. A. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett., 30, 1674, doi:10.1029/2003GL017496.
Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 3077–3092, doi:10.1175/JAS-D-11-0249.1.
Niu, F., and Z. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12, 8491–8498, doi:10.5194/acp-12-8491-2012.
Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286–301, doi:10.1016/j.atmosres.2009.09.008.
Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res., 116, D00T06, doi:10.1029/2011JD015888.
Paukert, M., and C. Hoose, 2014: Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds. J. Geophys. Res. Atmos., 119, 9073–9092, doi:10.1002/2014JD021917.
Peng, J., Z. Li, H. Zhang, J. Liu, and M. Cribb, 2016a: Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics. J. Atmos. Sci., 73, 231–249, doi:10.1175/JAS-D-15-0080.1.
Peng, J., and Coauthors, 2016b: Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. USA, 113, 4266–4271, doi:10.1073/pnas.1602310113.
Penner, J. E., S. Y. Zhang, and C. C. Chuang, 2003: Soot and smoke aerosol may not warm climate. J. Geophys. Res., 108, 4657, doi:10.1029/2003JD003409.
Penner, J. E., and Coauthors, 2006: Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys., 6, 3391–3405, doi:10.5194/acp-6-3391-2006.
Phillips, V. T. J., A. Khain, N. Benmoshe, and E. Ilotoviz, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 4527–4557, doi:10.1175/JAS-D-13-0375.1.
Phillips, V. T. J., A. Khain, N. Benmoshe, E. Ilotoviz, and A. Ryzhkov, 2015: Theory of time-dependent freezing. Part II: Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. J. Atmos. Sci., 72, 262–286, doi:10.1175/JAS-D-13-0376.1.
Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372, 250–252, doi:10.1038/372250a0.
Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 2016–2038, doi:10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.
Posselt, R., and U. Lohmann, 2009: Sensitivity of the total anthropogenic aerosol effect to the treatment of rain in a global climate model. Geophys. Res. Lett., 36, L02805, doi:10.1029/2008GL035796.
Prenni, A. J., and Coauthors, 2007: Can ice-nucleating aerosols affect Arctic seasonal climate? Bull. Amer. Meteor. Soc., 88, 541–550, doi:10.1175/BAMS-88-4-541.
Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.
Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697–8717, doi:10.5194/acp-9-8697-2009.
Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature, 1, 221–227, doi:10.1038/ngeo156.
Ramanathan, V., and Coauthors, 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, 28 371–28 398, doi:10.1029/2001JD900133.
Randall, D. A., 1980a: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125–130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.
Randall, D. A., 1980b: Entrainment into a stratocumulus layer with distributed radiative cooling. J. Atmos. Sci., 37, 148–159, doi:10.1175/1520-0469(1980)037<0148:EIASLW>2.0.CO;2.
Rayleigh, L., 1916: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag., 32, 529–546, doi:10.1080/14786441608635602.
Ren, C., and A. R. Mackenzie, 2005: Cirrus parametrization and the role of ice nuclei. Quart. J. Roy. Meteor. Soc., 131, 1585–1605, doi:10.1256/qj.04.126.
Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108, doi:10.1029/1999GL006066.
Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.
Rosenfeld, D., and T. L. Bell, 2011: Why do tornados and hailstorms rest on weekends? J. Geophys. Res., 116, D20211, doi:10.1029/2011JD016214.
Rosenfeld, D., Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 2503–2511, doi:10.5194/acp-6-2503-2006.
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, doi:10.1126/science.1160606.
Rosenfeld, D., and Coauthors, 2011: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys. Res. Lett., 38, L21804, doi:10.1029/2011GL049423.
Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987–1001, doi:10.1175/BAMS-D-11-00147.1.
Rosenfeld, D., and Coauthors, 2014a: Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys., 52, 750–808, doi:10.1002/2013RG000441.
Rosenfeld, D., B. Fischman, Y. T. Zheng, T. Goren, and D. Giguzin, 2014b: Combined satellite and radar retrievals of drop concentration and CCN at convective cloud base. Geophys. Res. Lett., 41, 3259–3265, doi:10.1002/2014GL059453.
Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014c: Climate effects of aerosol-cloud interactions. Science, 343, 379–380, doi:10.1126/science.1247490.
Rosenfeld, D., and Coauthors, 2016: Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA, 113, 5828–5834, doi:10.1073/pnas.1514044113.
Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105, 15 495–15 507, doi:10.1029/2000JD900129.
Saide, P. E., and Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956–965, doi:10.1002/2014GL062826.
Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 2601–2622, doi:10.1175/JAMC-D-12-0312.1.
Saleeby, S. M., S. R. Herbener, S. C. van den Heever, and T. L’Ecuyer, 2015: Impacts of cloud droplet–nucleating aerosols on shallow tropical convection. J. Atmos. Sci., 72, 1369–1385, doi:10.1175/JAS-D-14-0153.1.
Sanap, S. D., and G. Pandithurai, 2015: The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review. Atmos. Res., 164–165, 318–327, doi:10.1016/j.atmosres.2015.06.002.
Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 7699–7725, doi:10.1002/2014JD023006.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley-Interscience, 1232 pp.
Shrivastava, M., and Coauthors, 2013: Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study. J. Geophys. Res. Atmos., 118, 1343–1360, doi:10.1029/2012JD018218.
Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 127–10 148, doi:10.5194/acp-11-10127-2011.
Solomon, A., G. Feingold, and M. D. Shupe, 2015: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 15, 10 631–10 643, doi:10.5194/acp-15-10631-2015.
Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi:10.1002/2013GL058705.
Song, K., and S. S. Yum, 2012: Anthropogenic radiative forcing of marine stratocumulus clouds under different thermodynamic conditions—An LES model study. Atmos. Res., 118, 370–389, doi:10.1016/j.atmosres.2012.07.018.
Song, X., and G. J. Zhang, 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, doi:10.1029/2010JD014833.
Song, X., G. J. Zhang, and J.-L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. J. Climate, 25, 8568–8590, doi:10.1175/JCLI-D-11-00563.1.
Stephens, G., and T. Slingo, 1992: An air-conditioned greenhouse. Nature, 358, 369–370, doi:10.1038/358369a0.
Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613, doi:10.1038/nature08281.
Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.
Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430–446, doi:10.1175/JAS-D-12-076.1.
Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 3904–3915, doi:10.1175/2010JAS3363.1.
Sun, D., W. K. M. Lau, M. Kafatos, Z. Boybeyi, G. Leptoukh, C. Yang, and R. Yang, 2009: Numerical simulations of the impacts of the Saharan air layer on Atlantic tropical cyclone development. J. Climate, 22, 6230–6250, doi:10.1175/2009JCLI2738.1.
Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.
Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.
Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 1278–1305, doi:10.1002/2015JD023986.
Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 67–80, doi:10.5194/acp-6-67-2006.
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658, doi:10.1175/JAS-D-13-0305.1.
Twohy, C. H., 2015: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci., 72, 75–81, doi:10.1175/JAS-D-14-0133.1.
Twomey, S., 1977: Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 1752–1775, doi:10.1175/JAS3713.1.
van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699–718, doi:10.1175/2010JAS3603.1.
Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.
Varble, A., and Coauthors, 2014a: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 891–13 918, doi:10.1002/2013JD021371.