The U.S. Historical Climatology Network Monthly Temperature Data, Version 2

Matthew J. Menne
Search for other papers by Matthew J. Menne in
Current site
Google Scholar
PubMed
Close
,
Claude N. Williams Jr.
Search for other papers by Claude N. Williams Jr. in
Current site
Google Scholar
PubMed
Close
, and
Russell S. Vose
Search for other papers by Russell S. Vose in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

In support of climate monitoring and assessments, the National Oceanic and Atmospheric Administration's (NOAA's) National Climatic Data Center has developed an improved version of the U.S. Historical Climatology Network temperature dataset (HCN version 2). In this paper, the HCN version 2 temperature data are described in detail, with a focus on the quality-assured data sources and the systematic bias adjustments. The bias adjustments are discussed in the context of their effect on U.S. temperature trends from the period 1895–2007 and in terms of the differences between version 2 and its widely used predecessor (now referred to as HCN version 1). Evidence suggests that the collective effect of changes in observation practice at U.S. HCN stations is systematic and of the same order of magnitude as the background climate signal. For this reason, bias adjustments are essential to reducing the uncertainty in U.S. climate trends. The largest biases in the HCN are shown to be associated with changes to the time of observation and with the widespread changeover from liquid-in-glass thermometers to the maximum–minimum temperature system (MMTS). With respect to HCN version 1, HCN version 2 trends in maximum temperatures are similar, while minimum temperature trends are somewhat smaller because of 1) an apparent overcorrection in HCN version 1 for the MMTS instrument change and 2) the systematic effect of undocumented station changes, which were not addressed in HCN version 1.

NOAA/NCDC, Asheville, North Carolina

CORRESPONDING AUTHOR: Matthew J. Menne, NOAA/NCDC, 151 Patton Ave., Asheville, NC 28801, E-mail: matthew.menne@noaa.gov

In support of climate monitoring and assessments, the National Oceanic and Atmospheric Administration's (NOAA's) National Climatic Data Center has developed an improved version of the U.S. Historical Climatology Network temperature dataset (HCN version 2). In this paper, the HCN version 2 temperature data are described in detail, with a focus on the quality-assured data sources and the systematic bias adjustments. The bias adjustments are discussed in the context of their effect on U.S. temperature trends from the period 1895–2007 and in terms of the differences between version 2 and its widely used predecessor (now referred to as HCN version 1). Evidence suggests that the collective effect of changes in observation practice at U.S. HCN stations is systematic and of the same order of magnitude as the background climate signal. For this reason, bias adjustments are essential to reducing the uncertainty in U.S. climate trends. The largest biases in the HCN are shown to be associated with changes to the time of observation and with the widespread changeover from liquid-in-glass thermometers to the maximum–minimum temperature system (MMTS). With respect to HCN version 1, HCN version 2 trends in maximum temperatures are similar, while minimum temperature trends are somewhat smaller because of 1) an apparent overcorrection in HCN version 1 for the MMTS instrument change and 2) the systematic effect of undocumented station changes, which were not addressed in HCN version 1.

NOAA/NCDC, Asheville, North Carolina

CORRESPONDING AUTHOR: Matthew J. Menne, NOAA/NCDC, 151 Patton Ave., Asheville, NC 28801, E-mail: matthew.menne@noaa.gov
Save