• Adams, N., 2009: Climate trends at Macquarie Island and expectations of future climate change in the sub-Antarctic. Pap. Proc. Roy. Soc. Tasman., 143, 18, https://doi.org/10.26749/rstpp.143.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and et al. , 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 6, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, M. Sapiano, J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. J., N. Nicholls, P. D. Jones, and I. J. Butterworth, 1991: A further extension of the Tahiti–Darwin SOI, early ENSO events and Darwin pressure. J. Climate, 4, 743749, https://doi.org/10.1175/1520-0442(1991)004<0743:AFEOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and M. Lebsock, 2014: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, https://doi.org/10.1175/JCLI-D-13-00679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and et al. , 2016: Status of high-latitude precipitation estimates from observations and reanalysis. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, https://doi.org/10.1029/2010gl046451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthier, E., R. LeBris, L. Mabileau, L. Testut, and F. Remy, 2009: Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. J. Geophys. Res., 114, F03005, https://doi.org/10.1029/2008jf001192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2002: Model Selection and Multimodel Inference. 2nd ed. Springer, 515 pp.

  • Cai, W., P. G. Baines, and H. B. Gordon, 1999: Southern mid- to high-latitude variability, a zonal wavenumber 3 pattern, and the Antarctic circumpolar wave in the CSIRO coupled model. J. Climate, 12, 30873104, https://doi.org/10.1175/1520-0442(1999)012<3087:SMTHLV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. L. VanWoert, 1996: Interannual variations in Antarctic precipitation related to El Niño–Southern Oscillation. J. Geophys. Res., 101, 19 10919 118, https://doi.org/10.1029/96JD01769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and L. M. Leslie, 1988: A minimal model for the short-term prediction of rainfall in the tropics. Wea. Forecasting, 3, 243246, https://doi.org/10.1175/1520-0434(1988)003<0243:AMMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. C. Fyfe, and D. E. Parker, 2013: Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett., 40, 23022306, https://doi.org/10.1002/grl.50500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E. P. Lim, and H. Nguyen, 2014: Seasonal variations of subtropical precipitation associated with the southern annular mode. J. Climate, 27, 34463460, https://doi.org/10.1175/JCLI-D-13-00550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. B. Powers, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, ECMWF, 63 pp., https://www.ecmwf.int/node/18765.

  • Heymsfield, A. J., 2016: Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. J. Appl. Meteor. Climatol., 55, 20632090, https://doi.org/10.1175/JAMC-D-15-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiley, M. J., M. S. Kulie, and R. Bennartz, 2011: Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteor. Climatol., 50, 399418, https://doi.org/10.1175/2010JAMC2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 553 pp.

  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, L. B. Hande, and J. M. Hayes, 2012: The structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Climate, 25, 25352546, https://doi.org/10.1175/JCLI-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2015: A-Train observations of maritime midlatitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Climate, 28, 19201939, https://doi.org/10.1175/JCLI-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, D. Rosenfeld, R. Marchand, G. M. McFarquhar, and A. Protat, 2016: What is the role of sea surface temperature in modulating cloud and precipitation properties over the Southern Ocean? J. Climate, 29, 74537476, https://doi.org/10.1175/JCLI-D-15-0768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, https://doi.org/10.1126/science.1202131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., H. H. Hendon, J. M. Arblaster, F. Delage, H. Nguyen, S. K. Min, and M. C. Wheeler, 2016: The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett., 43, 71607167, https://doi.org/10.1002/2016GL069453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalysis. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2009: On the annual and semi-annual cycles of precipitation across Antarctica. Int. J. Climatol., 29, 22982308, https://doi.org/10.1002/joc.1810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medley, B., and E. R. Thomas, 2019: Increased snowfall over the Antarctic ice sheet mitigated twentieth-century sea-level rise. Nat. Climate Change, 9, 3439, https://doi.org/10.1038/s41558-018-0356-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatological Network daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., H. H. Hendon, E. P. Lim, G. Boschat, E. Maloney, and B. Timbal, 2018: Variability of the extent of the Hadley circulation in the Southern Hemisphere: A regional perspective. Climate Dyn., 50, 129142, https://doi.org/10.1007/s00382-017-3592-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedei, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 27, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009jd012442.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W. K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, https://doi.org/10.1007/BF01029783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486, https://doi.org/10.1175/1520-0469(1967)024<0472:THYOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., S. T. Siems, D. Belusic, M. J. Manton, and Y. Huang, 2015: A climatology of the precipitation over the Southern Ocean as observed at Macquarie Island. J. Appl. Meteor. Climatol., 54, 23212337, https://doi.org/10.1175/JAMC-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. D. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214, https://doi.org/10.1109/TGRS.2002.808312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 19
Full Text Views 89 89 6
PDF Downloads 114 114 9

Variations in Precipitation across the Southern Ocean

View More View Less
  • 1 Monash University, Melbourne, Australia
  • | 2 University of Melbourne, Melbourne, Australia
  • | 3 Australian Research Council Centre of Excellence for Climate Extremes, Melbourne, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Southern Ocean lies beneath a unique region of the global atmosphere with minimal effects of landmasses on the zonal flow. The absence of landmasses also means that in situ observations of precipitation are limited to a few ocean islands. Two reanalyses and two satellite-based gridded datasets are analyzed to estimate the character of the distribution of precipitation across the region. The latitudinal variation is computed across three longitudinal sectors, representing the Pacific, Atlantic, and Indian Oceans. The most recent ECMWF reanalysis (ERA5) is found to produce the most accurate estimate of the mean profile and seasonal cycle of precipitation. However, there is little consistency in the estimates of trends in monthly anomalies of precipitation. A more consistent description of precipitation trends is found by using linear regression of the precipitation anomaly with the local mean sea level pressure anomaly, the southern annular mode, and the Southern Oscillation index. In broad terms, precipitation is found to be decreasing at lower latitudes and increasing at higher latitudes, which is consistent with earlier climate model simulations on the impacts of anthropogenic climate change.

Corresponding author: M. J. Manton, michael.manton@monash.edu

Abstract

The Southern Ocean lies beneath a unique region of the global atmosphere with minimal effects of landmasses on the zonal flow. The absence of landmasses also means that in situ observations of precipitation are limited to a few ocean islands. Two reanalyses and two satellite-based gridded datasets are analyzed to estimate the character of the distribution of precipitation across the region. The latitudinal variation is computed across three longitudinal sectors, representing the Pacific, Atlantic, and Indian Oceans. The most recent ECMWF reanalysis (ERA5) is found to produce the most accurate estimate of the mean profile and seasonal cycle of precipitation. However, there is little consistency in the estimates of trends in monthly anomalies of precipitation. A more consistent description of precipitation trends is found by using linear regression of the precipitation anomaly with the local mean sea level pressure anomaly, the southern annular mode, and the Southern Oscillation index. In broad terms, precipitation is found to be decreasing at lower latitudes and increasing at higher latitudes, which is consistent with earlier climate model simulations on the impacts of anthropogenic climate change.

Corresponding author: M. J. Manton, michael.manton@monash.edu
Save