The Annual Cycle in Equatorial Convection and Sea Surface Temperature

Todd P. Mitchell Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Search for other papers by Todd P. Mitchell in
Current site
Google Scholar
PubMed
Close
and
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The coupled atmosphere–ocean system in the equatorial eastern Pacific and Atlantic exhibits a distinct annual cycle that is reflected in contrasting conditions at the times of the two equinoxes. The contrasts are so strong that they dominate the annual march of zonally averaged outgoing longwave radiation for the equatorial belt. The March equinox corresponds to the warm season when the equatorial cold tongues in the eastern Pacific and Atlantic are absent. With the onset of summer monsoon convection over Colombia, Central America, and West Africa in May–June, northward surface winds strengthen over the eastern Pacific and Atlantic, the equatorial cold tongues reappear, and the marine convection shifts from the equatorial belt to the intertropical convergence zones (ITCZs) along 8°N. As the northern summer program the ITCZs remain strong and shift northward to new 10°N, while sea surface temperature (SST) continues to drop over the cold tongues and the southern tropics, perhaps in response to the expanding stratocumulus cloud decks in the latter region. The cold tongui-ITCZ complex persists through the September equinox, which is characterized by suppressed conviction, not only over the cold tongues but also over much of equatorial South America.

On the basis of observational evidence concerning the timing and year-to-year regularity of the surface wind changes during the development of the cold tongues, it is argued that 1) the increase in the northward surface winds in response to the onset of the northern summer monsoon may be instrumental in reestablishing the cold tongues and 2) positive feedbacks involving both the zonal and meridional wind components contribute to the remarkable robustness of the cold tongue-ITCZ complexes in both oceans.

Abstract

The coupled atmosphere–ocean system in the equatorial eastern Pacific and Atlantic exhibits a distinct annual cycle that is reflected in contrasting conditions at the times of the two equinoxes. The contrasts are so strong that they dominate the annual march of zonally averaged outgoing longwave radiation for the equatorial belt. The March equinox corresponds to the warm season when the equatorial cold tongues in the eastern Pacific and Atlantic are absent. With the onset of summer monsoon convection over Colombia, Central America, and West Africa in May–June, northward surface winds strengthen over the eastern Pacific and Atlantic, the equatorial cold tongues reappear, and the marine convection shifts from the equatorial belt to the intertropical convergence zones (ITCZs) along 8°N. As the northern summer program the ITCZs remain strong and shift northward to new 10°N, while sea surface temperature (SST) continues to drop over the cold tongues and the southern tropics, perhaps in response to the expanding stratocumulus cloud decks in the latter region. The cold tongui-ITCZ complex persists through the September equinox, which is characterized by suppressed conviction, not only over the cold tongues but also over much of equatorial South America.

On the basis of observational evidence concerning the timing and year-to-year regularity of the surface wind changes during the development of the cold tongues, it is argued that 1) the increase in the northward surface winds in response to the onset of the northern summer monsoon may be instrumental in reestablishing the cold tongues and 2) positive feedbacks involving both the zonal and meridional wind components contribute to the remarkable robustness of the cold tongue-ITCZ complexes in both oceans.

Save