Regional Analysis of Temperature Extremes: Spatial Analog for Climate Change?

Barbara G. Brown National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Barbara G. Brown in
Current site
Google Scholar
PubMed
Close
and
Richard W. Katz National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Richard W. Katz in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The statistical theory of extreme values is applied to daily minimum and maximum temperature time series in the U.S. Midwest and Southeast. If the spatial pattern in the frequency of extreme temperature events can be explained simply by shifts in location and scale parameters (e.g., the mean and standard deviation) of the underlying temperature distribution, then the area under consideration could be termed a “region.” A regional analysis of temperature extremes suggests that the Type I extreme value distribution is a satisfactory model for extreme high temperatures. On the other hand, the Type III extreme value distribution (possibly with common shape parameter) is often a better model for extreme low temperatures. Hence, our concept of a region is appropriate when considering maximum temperature extremes, and perhaps also for minimum temperature extremes.

Based on this regional analysis, if a temporal climate change were analogous to a spatial relocation, then it would be possible to anticipate how the frequency of extreme temperature events might change. Moreover, if the Type III extreme value distribution were assumed instead of the more common Type I, then the sensitivity of the frequency of extremes to changes in the location and scale parameters would be greater.

Abstract

The statistical theory of extreme values is applied to daily minimum and maximum temperature time series in the U.S. Midwest and Southeast. If the spatial pattern in the frequency of extreme temperature events can be explained simply by shifts in location and scale parameters (e.g., the mean and standard deviation) of the underlying temperature distribution, then the area under consideration could be termed a “region.” A regional analysis of temperature extremes suggests that the Type I extreme value distribution is a satisfactory model for extreme high temperatures. On the other hand, the Type III extreme value distribution (possibly with common shape parameter) is often a better model for extreme low temperatures. Hence, our concept of a region is appropriate when considering maximum temperature extremes, and perhaps also for minimum temperature extremes.

Based on this regional analysis, if a temporal climate change were analogous to a spatial relocation, then it would be possible to anticipate how the frequency of extreme temperature events might change. Moreover, if the Type III extreme value distribution were assumed instead of the more common Type I, then the sensitivity of the frequency of extremes to changes in the location and scale parameters would be greater.

Save